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Summary 
 
This paper presents an overview of the modeling approaches that are used to represent, 
understand and control the interactions between the economy of a region, its energy 
production / consumption system, and the environmental impact of these activities. 
 
4B1. Introduction 
 
Energy systems are closely linked with economic development. Our modern societies 
depend largely on a complex network of technologies that extract, transform, deliver 
and utilize different energy forms to provide a set of services like comfort (air 
conditioning), transport, power, light, household needs, industrial heat, force, etc…  
Energy flows pervade the whole economic system in both the production and 
consumption sides. 
 
The oil crises of the seventies, the accompanying supply disruptions and sudden price 
jumps with the subsequent painful economic adjustments, eloquently demonstrated that 
the economy could not take for granted a steady supply of cheap fossil fuel; 
consequently a battery of models have been developed to explain the interdependence 
between the economy at large, and the energy sector, in particular.  The aim was to 
study the best way one economy could adapt, for example, to an abrupt change in 
availability of crude oil as a primary energy source.  The models developed at this 
occasion are typically PIES (a partial equilibrium model developed for the DOE), 
EFOM (a linear programming model developed for the European Commission), 
MESSAGE (a linear programming model developed at the IIASA) and MARKAL (a 
linear programming model developed for the IEA).  Let us also mention MEDEE, a 
simulation model for the demand of energy that has been very influential in the 
European Union. 
 
These acronyms refer to only a few of the large number of models that have been built 
to capture the complex interactions between technologies, energy options, economic 
development, and social acceptance of energy policies.  However these models are 
archetypal and indicate the main concerns and challenges faced by the decision makers 
and that the models should help to clarify: (i) Energy demand (like e.g. gasoline 
demand) is a derived demand; there is a consumption of a service (typically here private 
transportation) and, due to the use of particular technology, this translate into a demand 
for gasoline…  The same is true for many other services.  Therefore the energy demand 
is fundamentally related to technology choices.  This could be described in great details, 
either in optimization models (EFOM, MARKAL) or in simulation models (MEDEE).  
In optimization models one implicitly assumes that the technologies are adopted on the 
basis of a ‘cost-efficiency’ analysis, whereas in simulation models one may try to 
include other factors influencing the adoption of technologies by a consumer of energy 
services (for example a switching from an oil furnace to a wood furnace may not be 
uniquely triggered by cost considerations but could also be based on consumer 
subjective preferences).  (ii) Energy is a fundamental resource for the economy.  
Therefore energy demand will be influenced by ‘macro-economic’ adjustments taking 
place in other economic sectors (e.g., an energy tax may lower the production of energy 
intensive industrial sectors and thus reduce their energy demands).  Furthermore, the 
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supply and demand of different energy forms should balance on markets that could have 
a variety of structures, from purely competitive, to monopolistic, not to mention the 
oligopolistic market structures that characterize the world oil or coal markets.  In brief, 
the models should permit a detailed representation of new technology / energy options 
and should also permit a coupling with more detailed economic models and a 
representation of the different market structures in the energy sector. 
 
The oil crises were followed by a return to normal life and low world price of oil...  The 
motivations for the definition of global or national energy policies were receding.  Not 
for long, because, then, came the concern about global climate change...  This time, 
fossil fuels were not threatened to be quickly exhausted, but, being the major culprits in 
emitting too much green-house gases in the atmosphere, their use in particular for power 
generation and transportation should be severely curtailed in a sustainable economy.  
This has given a new impetus to the development of energy-economy-environment (E3) 
models.  MARKAL for instance has had developments in many different directions, 
with a new improved version called TIMES; its coupling with a macro-economic 
aggregated model has been realized in MARKAL-MACRO, following a precursor 
called ETA-MACRO.  Joint implementation for several world regions or countries, or 
for a developed and a developing country exchanging emission rights have been 
successfully performed.  Implementation at a local level (city or canton or urban 
community) has been successful, in particular in Sweden and Switzerland.  Other 
models following alternative modeling approaches (see below) have also continued their 
successful development to address the interplay between the energy sector and the 
economy, in particular in the context of global climate change. 
 
Our aim in this paper is to provide a first account of the general structure and potential 
use of these mathematical and simulation models of energy systems.  The paper is 
organized as follows.  Section 2 gives a first taxonomy of energy-economy-environment 
(E3) models, following their main modeling approach.  Section 3 proposes an 
alternative classification, detailing different model purposes.  Section 4 discusses 
technology ranking and Section 5 some issues in energy modeling (technological 
change issue, uncertainty issue and discounting issue).  The environmental issue is 
finally addressed in Section 6. 
 
5B2. Bottom-up versus Top-down Modeling 
 
Often one classifies the E3 models in the bottom-up or top-down categories.  The 
bottom-up approach follows a techno-economic philosophy that leads to disaggregated 
models representing the energy sector with great details.  By contrast, the top-down 
approach follows a macro-economic philosophy that leads to aggregate models in the 
sense that they use aggregate economic variables. 
 
In bottom-up models, one proceeds with a complete list of energy forms and energy 
technologies.  These models distinguish in particular production technologies (e.g., 
refineries, power plants) that transform primary energy (e.g., crude oil, wind) into 
secondary energy (e.g., gasoline, electricity), and distinguish also demand technologies 
(e.g., vehicles, light bulbs) that transform final energy (namely secondary energy that 
has been distributed to consumption points) into energy services (e.g., mobility, 
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lighting).  A detailed accounting is kept of energy input and output in every technology 
uses and balance conditions (energy conservation) are maintained everywhere when 
needed.  Aggregating all theses energy flows one obtains the global energy accounts for 
the region under study.  Bottom-up models are driven by a description, generally 
exogenously given, of demands for the different energy services.  These models enable 
one to select the least-cost energy configuration (energy forms and technologies) that 
satisfies in particular energy demands and eventually pollution limits.  Examples of 
such models are EFOM, MESSAGE and MARKAL. 
 
In top-down models, one considers a broader equilibrium framework where one 
computes demands—for goods and services—and supplies from the main economic 
sectors (energy, but also agriculture, industries and services).  These models are usually 
based on macroeconomic theory and econometric specifications using economic 
aggregates as observables.  Top-down models enable one to capture more economic 
feedbacks between the energy sector and other economic sectors, but usually without 
representing explicitly energy technologies.  Energy use is indeed rather defined as the 
result of economic equilibria: considering for instance the market of a given commodity 
whose supply and demand is computed, energy consumed by firms to produce this 
commodity is typically determined by the relative price of energy compared to the one 
of the other production factors (e.g., capital, labor, materials).  Notice that this choice 
among different production factors depends also on elasticities of substitution, which 
represent degrees of substitutability among these factors.  Examples of top-down 
models are EPPA (a computable general equilibrium model developed at MIT), GEM-
E3 (a computable general equilibrium model developed for the European Commission), 
and MACRO (a Ramsey-type optimal growth model). 
 
These two categories of models are complementary as they permit one to address 
different questions posed by the rationalization of energy production and usage.  
Bottom-up models are appropriate for assessment of new technologies and marginal 
cost analysis.  Top-down models are more adapted to the analysis of the macro-
economic impacts of energy policies. 
 
As with every taxonomy, this classification of E3 models between bottom-up and top-
down ones is clearly limited, as for instance hybrid models are developed which try to 
incorporate within the same framework both modeling approaches, as discussed in 
particular in the forthcoming Section 3.2.  To go beyond this limitation, we propose in 
Section 3 an additional taxonomy that classifies E3 models based on their main purpose. 
 
6B3. Simulation vs. Optimization 
 
Mathematical models are used to give a formalized representation of the energy system 
so as to permit computer-based operations that provide insight concerning different 
possible energy policies.  In simulation models, the emphasis is put on the consistent 
treatment and exploitation of a large techno-economic database.  In computable 
economic equilibrium models, one tries to capture the basic economic equilibrium 
adjustments that should drive the energy system in a competitive world.  Optimization 
and simulation models are differentiated on another level: simulations and trend 
analysis models focus more on the most likely outcomes whereas optimization models 
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look for ‘ideal’ outcomes (e.g., best technologies and energy forms satisfying 
exogenous constraints). 
 
3.1 Simulation and Future Tendency Predictions 
 
Simulations for future energy use are based on predictions emanating from knowledge 
of accumulated data from the past; the more relevant data available, the more accurate 
the simulation.  Consider, for example, the demand for electricity, or the demand for 
light fuel oil in a given region.  This demand is the result of a very large set of 
technology choices made by the households, the industries, the transport users, etc.  To 
understand how the demand could evolve in the future, given a wide range of 
technologies, both old and new, the modelers have been prompted to build large and 
comprehensive data bases that could be exploited numerically to provide consistent 
evolution scenarios over a relatively long term.  A good example of that strand of 
models is MEDEE, which has been widely used in the EU to analyze energy demand 
formation.  In these models the mathematical sophistication is reduced; the model boils 
down to an accounting system.   
 
This accounting system analogy leads one to classify simulation models as bottom-up in 
nature as the aggregated demand from all possible energy uses is supplied by the 
accumulation of all possible energy supplies and services. 
In a related methodology, econometrics provides forecasting based on economic models 
identified through statistical methods (e.g., regression analyses, simultaneous equations 
models with endogenous and exogenous variables, etc.) in order to extrapolate the past 
observations to predict future tendencies.  One weakness of econometric methods is that 
it is based on a statistical analysis of past energy market behavior; therefore it might be 
difficult to represent in an econometric model the impact of new technology options.  
This has led to other techniques such as trend analysis. 
 
Trend analysis looks at the history of an economic variable to make predictions.  The 
introduction of new technologies can be represented in trend analysis and predictions 
are made based on logical assumptions integrated in decision rules.  An example would 
be domestic electrical power consumption, where past decreases in domestic energy 
consumption came after the introduction of more efficient technologies, e.g. more 
efficient refrigerators, lighting, and other appliances.  The prediction for future power 
consumption could be assisted by the knowledge gained in observing the outcome of 
these power efficient devices.  The uncertainty in the complicated social behavior of the 
consumer will, however, limit the predictive capability of trend analysis. 
 
- 
- 
- 
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