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Summary 
 
It is becoming increasingly clear that the transport of eroded material from land to water 
by overland flow is an important environmental problem, promoting the eutrophication 
of surface waters, damaging freshwater ecosystems and causing microbial 
contamination of surface water sources. Sediment derived from the soil is a pollutant in 
its own right: reducing light penetration and physically damaging freshwater 
ecosystems; it is a carrier of pollutants such as pesticides and phosphorus and many 
contaminants are associated with soil particle surfaces. As point-sources of pollutants 
are controlled there is an urgent need to provide the scientific understanding to underpin 
operational decisions being made with respect to diffuse pollutants. This Chapter 
reviews the major developments in mathematical soil erosion modeling over the past 
two decades. In particular, we review progress in finding solutions to the Rose-Hairsine 
model and their application to experimental data. Because of its unique ability of the 
Rose-Hairsine model to explicitly recognize the differential behavior of the various 
sediment particle size classes which comprise natural soils, not only can it provide 
greater insight into the movement of sediment across both farmlands and other 
contaminated land, but it is better positioned than any other model to estimate the 
impact of eroded sediment on water quality of surrounding rivers or streams. Such 
differential behavior results in the preferential movement of fine sediment with attached 
compounds such as nutrients, fertilizers and pollutants.  Neglecting the size selectivity 
in the sediment transport and deposition process results in a significant underestimation 
of the downstream impact of suspended sediment enriched with absorbed chemicals. 
 
1.  Introduction 
 
Sculpturing of the land surface by erosion, transport and deposition processes has 
always played a major role in shaping the land surface of the earth. Geomorphologists 
have long recognized that glaciation is a major erosion agent in cold climates, mass 
movement is common in steep humid regions, and in many regions both wind and water 
can play dominant roles in sediment transport. 
 
When human activity substantially reduces the cover provided by vegetation or litter, 
and when soil is disturbed and loosened, these natural erosion processes can be greatly 
accelerated. Land management practices found to be necessary or beneficial to the 
development of agriculture were developed in many countries. Such practices were 
developed in temperate climatic regions, such as Europe, and typically involved forest 
clearing and subsequent cultivation. These practices were transferred to other regions of 
the world which were colonized or conquered, without realizing that the direct transfer 
of such land management methods may be inappropriate, or at least require 
modification for sustainable land use in quite different soil and climatic contexts. The 
scale and rate of expansion of such transferred land management practices was vastly 
increased by the rapid adoption and power increase in mechanized forms of cultivation. 
 
Thus, early in the last century, especially in countries such as the USA and Australia, 
European-based agricultural practices were rapidly extended into regions where the soil 
and climatic contexts were quite different from their European origins. The resultant 
extensive and accelerated rates of soil erosion which occurred in such countries 
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provided a major incentive for research into soil erosion, especially in the USA 
(Hudson, 1981). This is not to infer that land degradation due to water and wind erosion 
is restricted to such countries (Pimental, 1976; Oldeman, 1994). However, a brief 
history of water erosion research which follows will be restricted to the USA. 
 
Early development of soil erosion research in the USA 
 
The United States Department of Agriculture (USDA) declared a policy of land 
protection in 1907, and from 1915 onwards a number of agencies commenced 
investigation of the effect of different treatments on runoff and soil erosion from 
defined plots (Bennett, 1939). This early applied research was expanded and accelerated 
with the establishment of Federal and State Experiment Stations, and from 1928 to 1953 
a period of intensive collection and tabulation of runoff and soil loss data occurred. This 
work included experiments on mechanical ways of controlling soil loss and runoff from 
small watersheds. In later years, data using artificial rainfall simulators added to the 
very large body of collected data. 
This substantial empirical database provided guidance on the role of many factors and 
agronomic treatments in controlling soil loss (Ayres, 1936). However, very few plots 
were equipped to measure the rate of runoff; only the total runoff and soil loss were 
recorded. Since rate measurement technology was not the limiting factor, this 
measurement choice may have come from the mental model held by soil scientists 
concerned with soil erosion at the plot scale. This model appears to be that “raindrops 
detach soil and overland flow simply transports this previously removed sediment over 
the soil surface” (Rose, 1993). 
 
This early emphasis on the role of raindrop impact, and relative neglect of the role of 
overland flow in soil erosion, appears to have been strengthened by the studies of 
raindrops and erosion by Laws (1940), Ellison (1947), Ekern (1951), and Hudson 
(1957). 
 
The very large body of data collected by the USDA and collaborators called for some 
kind of synthesis, condensation, or generalization. For example, Zingg (1940) 
developed an empirical equation relating soil erosion to slope and slope length. Also 
important to subsequent development was Musgrave’s (1947) parametric equation 
which incorporated a rainfall erosivity index as well as other factors. This type of 
equation was revised and expanded several times to form the Universal Soil Loss 
Equation (or USLE) of Wischmeier and Smith (1978). 
 
The USLE was developed by applying statistical multivariate regression techniques to 
the large data bases collected by the USDA Agricultural Research Service, its 
collaborators and predecessors. The data base included the results of long-term studies 
of factors believed to affect soil erosion in areas of agricultural significance east of the 
Rocky Mountains in the USA. Whilst large in size, the data base was for a restricted 
ecological range, covered slopes of only up to about 7%, and to soils with a low 
percentage of montmorillonite clay (Morgan and Davidson, 1986). 
 
The factor-product form of data summary provided by the USLE is given by 
(Wischmeier and Smith, 1978) 
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f f o f fA R K LS C P= ,       (1) 
 
where A  is the mass of soil lost from unit area per year, averaged over as many years as 
is appropriate. fR , the rainfall erosivity factor, is calculated using data on both the 
kinetic energy and intensity of rainfall. The soil erodibility, fK , is in practice calculated 
as the unknown in Equation (1), given values for the slope length L , slope oS , the crop 
management factor, fC , and fP , the factor describing any erosion control practice 
which might be adopted. Experience with calculated values of fK for agriculturally 
important soils in the USA has been summarized in the form of a nomogram, which can 
be used predictively for such soils (Wischmeier and Smith, 1978). 
 
Wischmeier (1976) took pains to emphasize the limitations of the USLE, stressing that 
it was particularly designed to address objectives such as the following: 
• Give estimates of long-term average annual soil loss from a particular field slope, 

and with a particular land use and management. 
• Provide guidance on the selection of cropping, management systems and 

conservation practices for specific soils and slopes. 
• Provide soil loss estimates for conservationists to use for determining soil 

conservation needs. 
 
Wischmeier (1976) warned against using the USLE beyond the regions where the basic 
information was obtained, or to make soil loss estimates for individual erosion events. 
The USLE applies only to situations where net deposition does not occur. The USLE is 
based on correlations. Since there is no inclusion in the USLE of factors directly 
representing physical parameters such as infiltration or overland flow velocity, some 
factors will be influenced by correlations with effects due to these processes. 
 
Especially in less humid environments, there is a practical limitation in developing 
locally relevant parameters for use in the USLE methodology. This limitation is that a 
long time period, possibly several decades, may be required in order to experience an 
adequate number of erosion events (Edwards, 1987) to reliably estimate these parameter 
values. 
 
Many modifications have been made to the USLE designed to overcome some of its 
limitations. Perhaps the most widely accepted modification is RUSLE (Revised USLE) 
described by Renard et al. (1994). 
 
Soil erosion and conservation developments beyond the USLE 
 
It is clear that the origin and purpose of the USLE was not to describe the processes 
affecting soil erosion. The objective of more recent research on soil erosion has been to 
describe such processes so that more effective identification and predictability of 
parameters involved can be achieved. This objective has not been readily obtained, and 
research to support this objective is still actively in train. 
 
The first general area of advance has been to recognize that a vital role in erosion is 
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played, not only by rainfall, but also by overland flow. Thus, the currently accepted 
conceptual model, replacing that of earlier researchers previously given, is that: 
“Raindrops detach soil, and overland flow both erodes and transports eroded soil over 
the land surface” (Marshall, Holmes and Rose, 1996). The common presence of rills in 
erosion events provides evidence for this statement. 
 
The need to predict excess rainfall from rainfall characteristics requires a robust model 
of the infiltration process. Especially as scale increases, there is increasing evidence that 
spatial variability in infiltration rate is common, so that infiltration equations that 
include this behavior have advantages over one-dimensional infiltration models (Yu et 
al., 1997, Yu, 1999). 
 
A second major area of development has been recognition of the general importance of 
the role of sediment deposition as an ongoing process which dynamically accompanies 
whatever mix of erosion processes is at work. The rate of sediment deposition depends 
on the settling-velocity characteristic of the sediment involved. Interaction in settling 
between sediments of quite different size (and therefore settling velocity) appears to be 
an important factor (Lovell and Rose, 1991). 
 
The range of models developed to describe the series of dynamic processes involved in 
soil erosion, deposition and transport will be reviewed in subsequent sections. Although 
the form of description of these processes is not always in complete agreement, Figure 1 
illustrates the dynamic form of interaction widely accepted. 
 

 
 

Figure 1: Flow diagram describing the interaction of erosion processes between the 
sediment flux and the soil surface.  Rates of processes exchanging sediment are shown 

by valve symbols 
 
A common experimental finding is that in any given erosion situation there is an upper 
limit to the resulting sediment concentration. For flow-driven erosion, Foster (1982) 
introduced the term ‘transport limit’ to describe this limiting value. A theoretical 
expression for the transport limit has been derived by Rose and Hairsine (1988), and a 
corresponding limit for rainfall-driven erosion by Hairsine and Rose (1991). 
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2. Surface Hydrology 
 
Since it is overland flow which transports the suspended sediment, any model of soil 
erosion processes must first begin with a description of the surface hydrology. The 
governing equations, obtained from conservation of both mass and momentum, for 
unsteady one-dimensional non-uniform flow of water down a planar surface of unit 
width are given by 
 

( ) ,h uh R
t x

∂ ∂
+ =

∂ ∂
       (2) 

 
and 
 

o f( ) .u u h Ruu g g S S
t x x h

∂ ∂ ∂
+ + = − −

∂ ∂ ∂
         (3) 

In (2) and (3), which are usually referred to as the St Venant equations, h  is the mean 
depth of flow, u  is depth averaged velocity, R  is the lateral inflow per unit length, g  is 
gravity, 

oS  is the bed slope, fS is the friction slope, t is time and x  is distance 
downslope. 
 
In general the St Venant equations need to be solved numerically, however under flow 
conditions where friction and gravity effects dominate those due to inertial and pressure 
effects, then (3) has the simple solution 

o fS S= . Consequently (2) and (3) reduce to the 
kinematic wave model for overland flow or, 
 

,h q R
t x

∂ ∂
+ =

∂ ∂
       (4) 

 
where 
 

,mq Kh=        (5) 
 

1/2
o .SK
n

=        (6) 

 
In (4), (5) and (6), q  is the volumetric flux per unit width, n  is the Manning's 
roughness coefficient and m  is an exponent having a value of approximately 5/3 for 
turbulent flow and 3 for laminar flow. Woolhiser and Liggett (1967) have shown that 
the kinematic wave model is a good approximation to the St Venant equations provided 
that the kinematic number ek , where 2

e o n r/  k S L h F= (
nh  is the normal depth at x L=  

and 
rF  is the Froude number based on normal flow) is greater than 20. This was 

however later modified by Morris and Woolhiser (1980) to 2
e r 5 k F > when r 0.5F <  

and e 20k >  when r 0.5F > . 
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The later inflow or excess rainfall rate R  is defined from 
 

r ,R P I= −        (7) 
 
where P  is the rainfall rate and 

rI  is the infiltration rate. Due to spatial and temporal 
variability in P  and rI , R  in general depends on both x  and t  and only numerical 
solutions to (4) and (5) are possible (Sherman and Singh, 1976). Under the simplifying 
yet still physical realistic assumptions of a constant rainfall rate or a time varying 
rainfall rate, analytical solutions to (4) and (5) are possible and can be found by using 
the method of characteristics. 
 
2.1 Analytical Solutions 
 
(a) R  = constant 
 
The solution for a constant excess rainfall rate was first given by Henderson and 
Wooding (1964) as 
 

1

1 ,
m m mRxh x K R t

K
−⎛ ⎞= ≤⎜ ⎟

⎝ ⎠
       (8) 

 
1 ,m mh R t x K R t−= ≥        (9) 

 
for the initial and boundary conditions 
 

0, 0, 0 ,
0, 0, 0 .

t x h
t x h
= > =
> = =

     (10) 

 
(b) ( ) with ( ) 0,  0R R t R t t= ≥ ≥ . 
 
The solution of Henderson and Wooding (1964) was generalized by Parlange et al 
(1981) for a positive time dependence of R  on t . For the initial and boundary 
conditions of  (10) the solution is given parametrically by 
 

o
c( ) ,

t

t
h R t dt x x′ ′= ≤∫      (11) 

 

0 0

1

c( ) ,
mt t

t t
x Km R t dt dt x x

−
⎡ ⎤′ ′= ≤⎢ ⎥⎣ ⎦∫ ∫      (12) 

 
with the parameter 0t  in the range 00 t t≤ ≤ . The boundary condition (10) is given by 

0t t=  while the initial condition is satisfied by 0 0t t= = .  For values of x  greater than 

cx  where 
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1

c 0 0
( ) ,

mt t
x Km R t dt dt

−
⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦∫ ∫      (13) 

 
( 0 0t =  in (12)), then h  is independent of x  and given by (11) with 0 0t = . 
 
(c) 0 *,   ( ) 0,  and  *,  ( ) 0t t R t t t R t≤ ≤ ≥ > < . 
 
When the rainfall rate falls below the infiltration rate then R  becomes negative and 
neither of the solutions presented in (a) or (b) above apply. Two quite specific solutions 
for 0R <  have been given in the literature by Cundy and Tento (1985) and Giraldez and 
Woolhiser (1996). These were for a constant rainfall rate of finite duration t* and a 
modified Philip infiltration equation (Cundy and Tento, 1985) or a Smith and Parlange 
(1978) infiltration equation (Giraldez and Woolhiser). In Sander et al (1990) though, a 
solution was developed for essentially an arbitrary R(t) function subject only to the 
constraint 0 *,   ( ) 0,  and  *,  ( ) 0t t R t t t R t≤ ≤ ≥ > < . This solution incorporates both the 
Cundy and Tento (1985) and Giraldez and Woolhiser (1996) solutions. 
 
Since ( ) 0 for 0 *R t t t≥ ≤ ≤ , then the solution for this time period is still given by that 
of Parlange et al (1981) or (11), (12) and (13). For *t t>  a drying free surface is formed 
and begins to move downslope from 0x =  so that the 0h =  boundary condition no 
longer occurs at 0x = , but at d ( )x x t=  where 
 

1 1

1

d ( ) ( ) ,
mt t

t t
x t Km R t dt dt

−
⎡ ⎤′ ′= ⎢ ⎥⎣ ⎦∫ ∫      (14) 

 
with 1 *t t t≤ ≤ , and 1t  defined from 
 

1

( ) 0 .
t

t
R t dt′ ′ =∫      (15) 

 
Equations (14) and (15) give the time dependence of the edge of the free surface for 

*t t> .  In the region 
dx x> , the solution is still given by (11) and (12) but with to 

restricted to the range 
0 10 t t≤ ≤ . 

 
- 
- 
- 
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[Overviews the development of the WEPP model.] 
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eds. D.J. Greenland and I. Szaboles. pp. 99-118. CAB International, Wallingford, UK. [Reviews the 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS – Vol. II - Mathematical Soil Erosion Modeling - G.C. Sander, C.W. Rose, W.L. Hogarth, J.-Y. 
Parlange, I.G. Lisle 

©Encyclopedia of Life Support Systems(EOLSS) 

global extent and problems of soil degradation.] 
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Singh, V.P., (1983).  Analytical solutions of kinematic equations for erosion on a plane II.  Rainfall of 
finite duration.  Advances in Water Research 6, 88-95. [The method of characteristics is used to find 
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absence of data on runoff rates. I. Theory and methodology. Australian Journal of Soil Research 37, 1-11. 
[This paper describes methods that can be used to overcome lack of data on runoff rates, as distinct from 
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modelling of runoff hydrographs for different tillage treatments.  Soil Science Society of America Journal,  
64, 1763-1770. [A three parameter runoff model is tested across a range of different tillage treatments and 
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