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Summary 
 
This chapter presents an overview of the mathematical models associated with population 
ecology. Since the inception of the academic subject of ecology, mathematical models 
have been used to predict and understand changes in populations. Dealing with numbers 
of individuals of a species or interactions between species that change over time is a 
dynamical system. Such dynamical ecological systems include the interaction between 
competitors for limiting food, the effects of mutualists or the trophic effects of 
predator-prey interactions. This chapter begins with a broad introduction to population 
ecology and shows how mathematical models have been developed to explore a range of 
different ecological processes in continuous and discrete time. Towards the end of the 
chapter, brief consideration is given to stochastic formulations of these ecological 
processes. The chapter concludes with brief perspectives on the future role of 
mathematics in population ecology.  
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1. Introduction 
 
Population ecology is the study of the changes in abundance and distribution of species 
over time and through space. It is a quantitative subject and relies heavily on the language 
of mathematics to formalize concepts. Four key parameters: births (B), deaths (D), 
immigration (I)and emigration (E)provide the fundamental basis for understanding the 
patterns of temporal abundance and spatial distribution of organisms. The changes in 
numbers (N) of a species through time and space can be expressed simply as:  
 
N B D I E= − + − . (1) 
 
This expression (1) states that an organism will increase in numbers through births and/or 
immigration, and decrease through death and/or emigration. The overall objective of this 
chapter is to introduce how mathematical models and techniques can be applied to 
problems in population ecology. More specifically, in this chapter, the population 
processes associated with births and deaths are considered. Three major types of 
population models are presented: continuous-time models, discrete-time models and 
stochastic models. A comprehensive discussion of their role in understanding the patterns 
and processes associated with single species, competitive and predator-prey interactions 
is presented. The chapter concludes with a consideration of the prospects for models in 
population ecology and their general future role in biology.  
 
The formulation of mathematical models provides a logical framework for developing, 
testing and criticizing ecological hypotheses. Mathematical models of ecological theory 
can be formulated in one of two ways. Firstly as deterministic models (i.e. using 
difference or differential equations) such as the continuous-time Lotka-Volterra model of 
interspecific competition or the discrete-time Nicholson-Bailey predator-prey model, or 
secondly, as stochastic models in which the occurrence of events is considered to be 
probabilistic even though the underlying rates remain constant. Although the use of 
mathematics in biology has often been controversial with biological realism often being 
ignored for the sake of mathematical generalities, mathematical models have provided 
biology (e.g. population ecology and population genetics) with a conceptual paradigm 
through which the occurrence of key patterns and processes can be expressed and 
explored.  
 
2. Continuous-Time Population Models 
 
2.1. Pure Birth Processes 
 
The simplest ecological scenario to envisage is a pure birth process. This occurs if, over a 
short time period, a population increases without the constraints of crowding, competition 
or contests. If it is assumed that within this time frame death does not occur and the birth 
rate (λ) is the same for all individuals (genetic homogeneity) then the growth rate of the 
population may be considered in terms of an ordinary differential equation. If N(t) 
denotes the population size at time t, in small time intervals of length τ , the increase in the 
population size from time t to t + τ is:  
 

( ) ( ) ( )N t N t N tτ λ τ+ = + ⋅ ⋅ . (2) 
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Subtracting N (t) from each side of this expression (2) and dividing through by τ gives:  
 

( ) ( ) ( )N t N t N tτ λ
τ

+ −
= ⋅ . (3) 

 
Letting τ → 0 then yields the ordinary differential equation for a pure birth process:  
 

( ) ( )dN t N t
dt

λ= ⋅  (4) 

 
such that the rate of change of N with respect to t is the product of the birth rate (λ) and the 
current population size (N (t)). Eq. (4) can be integrated to give (with appropriate initial 
conditions) the solution:  

( ) (0) exp( )N t N tλ= ⋅ ⋅ . (5) 
 
Given the initial assumptions of no death and constant birth rate, a pure birth process 
gives rise to an exponential increase in population size. A statistical test for a pure birth 
process would be to plot ln( ( ))N t  versus t and check for an approximate positive linear 
relationship with slope λ and intercept ln( (0))N . 
 
2.2. Pure Death Processes 
 
In contrast to the pure birth process, a similar ordinary differential equation can be 
derived for a pure death process. This type of ecological process centers on how the 
longevity and survival of an organism affects changes in population numbers through 
time. Under a pure death process it is assumed that individuals do not give birth, they do 
not suffer the constraints of crowding, competition or contests and the death rate (µ) is the 
same for all individuals. If N (t) denotes the population size a time t, then in small time 
intervals of length τ ,the decrease in population size from time t to t + τ :  
 

( ) ( )  ·  · ( ).N t N t µ N tτ τ+ = −  (6)  
 
The ordinary differential Eq. (following the scheme for the pure birth process (3)) for a 
pure death process is:  
 

( ) ( )dN t N t
dt

μ= − ⋅  (7) 

 
and has solution:  
 

( ) (0) exp( . )N t N tμ= ⋅ −  (8) 
 
Again given the assumptions, under a pure death process a population would decline 
exponentially. A simple test of this type of process would be to regress ln( ( ))N t  on t and 
check for a negative linear relationship with slope µ and intercept ln( (0))N .  
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2.3. Birth-death Processes 
 
Given that populations change as a result of birth and death processes, the pure, 
individual, processes of birth and death can be combined to formulate a birth-death 
process that can be expressed as a continuous-time model for the changes in population 
numbers. Deriving the ordinary differential equation for the birth-death process proceeds 
in the same way as for a pure birth and pure death process. If it is assumed that individuals 
give birth at a rate λ and die at a rate µ, and do not suffer the constraints of crowding or 
competition, the deterministic ordinary differential equation is:  
 

( ) ( ) ( )dN t N t
dt

λ μ= − ⋅  (9) 

 
with solution:  

 ( )   (0) · exp(( ) · ).N t N tλ μ= −  (10)  
 
The net rate of change ( )λ μ−  may be positive or negative depending on whether 

µλ > or vice versa. This can give rise to either exponential increase or decrease. This is a 
simple representation of how changes in population numbers may occur where the rate of 
birth and death are independent of population size.  
 
In reality, population growth must be restricted by the availability of limiting resources. 
When these resources are fully utilized the population can grow no further: this upper 
bound or carrying capacity on population growth is determined by the environment. As 
the total abundance of an organism will only increase through births and immigration, or 
decrease through deaths and emigration, we seek general expressions that link these 
processes to population size and density. 
  
For instance, if rates are functions of population numbers, the birth and death processes 
can be expressed as B(N )and D(N ), respectively. These simple expressions allow 
virtually any functional form of birth or death to be modeled and in the limiting case when 

(  )  B N λ= and (  )D N µ= , then the birth-death process described above (Eqs. (9) and 
(10)) is recovered.  
 
If N (t) denotes the population size at time t, then in small intervals of time of length τ , the 
increase in population size from time t to t + τ is: 
 

( ) ( ) ( ( ) ( ))N t N t B N D Nτ τ+ = + − ⋅  (11)  
 
Subtracting ( )N t and dividing through by τ and allowing τ → 0gives:  
 

( ) ( ) ( )dN t B N D N
dt

= −  (12) 

 
Solutions to this ordinary differential equation are critically dependent on the functional 
forms of B(N )and D(N ). Although analytical solutions may be difficult to obtain, 
numerical solutions are always feasible with an appropriate numerical integration 
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algorithm. Simple functional forms for the dependence of births and deaths on population 
numbers illustrate how the processes affect changes in population growth and abundance. 
For example, if in a birth-death process ( )B N Nλ= ⋅  and ( ) ( 1)D N N Nμ= ⋅ ⋅ − , then Eq. 
(12) is:  
 

( ) [ ( 1)]dN t N N
dt

λ μ= ⋅ − − . (13) 

 
One common question asked of population models is whether the ecological processes 
being modeled have any stable steady states. That is, over time will the population remain 
at a constant size or will it increase or decrease. A population will remain in a steady state 
for some value of N if both births and death rates are equal. A deterministic steady state 
( )N∗  for the birth-death model (Eq. (13)), determined by setting ( ) 0dN t

dt =  and solving 
for N , is given by:  
 

N λ μ
μ

∗ −
=  (14) 

 
This steady state is considered to be stable if after experiencing a small perturbation, the 
population returns to this steady state value ( )N∗ . We can derive a formal test for this 
through local (as opposed to global) stability analysis: it is assumed that the population is 
displaced, through a small perturbation, from its steady state value and the subsequent 
population behavior is then monitored.  
 
Considering a small perturbation from a steady state ( )N∗  
 
n N N∗= +  (15) 
 
where n is the resulting perturbed value of N , we can expand about the steady state for the 
birth and death processes through the use of a Taylor series expansion. This yields:  
 

2( ) ( ) ( )
N N

dBB N B N n o n
dN ∗

∗

=

⎛ ⎞= + ⋅ +⎜ ⎟
⎝ ⎠

 (16) 

and 
 

2( ) ( ) ( )
N N

dDD N D N n o n
dN ∗

∗

=

⎛ ⎞= + ⋅ +⎜ ⎟
⎝ ⎠

. (17)  

 
Substituting these Eqs. ((16) and (17)) into the original birth-death process (Eq. (12)) 
gives the rate of change of the population following a perturbation as:  
 

2( ) ( ) ( ) ( )
N N

dn t dB dDB N D N n o n
dt dN dN ∗

∗ ∗

=

⎛ ⎞= − + ⋅ − +⎜ ⎟
⎝ ⎠

. (18) 
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At the steady state, births and deaths are equal and following a small perturbation, terms 
of n

2 
and higher terms of the Taylor expansion are assumed to be negligible. After a small 

displacement, the population is then expected, at least to a first approximation, to follow:  
 

( )

N N

dn t dB dDn
dt dN dN ∗=

⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

 (19) 

 
with solution  
 

( ) (0) exp
N N

dB dDn t n t
dN dN ∗=

⎛ ⎞⎛ ⎞= ⋅ ⋅ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (20) 

 
This solution (Eq. (20)) implies that the population has steady state dynamics and that 
small perturbations decay away exponentially if  
 

0
N N

dB dD
dN dN ∗=

⎛ ⎞− <⎜ ⎟
⎝ ⎠

 (21) 

 
This occurs if B(N) > D(N) whenever N N∗<  and B(N ) <D(N ) whenever N N∗>  .  
 
2.4. Logistic Model 
 
In many populations, the utilization of an available resource will eventually limit the 
long-term increase of a population. A development of the birth-death process (Eq. (12)) in 
which the net growth rate per individual is a function (f ) of total population size (N) could 
take the form:  
 

( ) ( )dN t f N N
dt

= ⋅ . (22) 

 
If N is large then ( ) 0df N

dN <  since the larger the population grows, the greater the 
inhibitory effect on further growth. The simplest assumption is to allow f (N ) to be linear: 
f (N )= r − s · N where r and s are positive constants representing the birth and death rates, 
respectively. This is the Verhulst-Pearl logistic equation. It predicts that, in the absence of 
interactions with other species, a population will grow to a carrying capacity ( )N∗ , where 

/N r s∗ = , the ratio of growth rate to death rate. The logistic model is a useful description 
of how populations grow in the presence of a limiting resource. Species, however, do not 
act in isolation but are embedded in webs of competitive and trophic interactions. Next, 
we explore the role of population models in understanding the effects of interspecific 
(between-species) competition before developing the theme further to examine 
predator-prey theory.  
 
2.5. Competitive Interactions 
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2.5.1. Interspecific Competition 
 
Species are likely to compete for limiting resources such as food or territory. The 
mathematical theory of these interspecific competitive interactions is well established. 
Although correlation does not necessarily imply causation, (for example, a negative 
correlation between populations of two organisms does not necessarily imply 
interspecific competition), simple mathematical models of competition do assume that a 
species growth rate is inhibited through both intraspecific (within-species) and 
interspecific (between species) processes. If 1N  and 2N  denote the numbers of 
individuals of species 1 and 2, respectively, then the single species logistic model (Eq. 
(22)) can be extended to a two species form: 
 

1
1 11 1 12 2( )l

dN
N r s N s N

dt
= ⋅ − ⋅ − ⋅  (23) 

 
2

2 2 22 2 21 1( )
dN

N r s N s N
dt

= ⋅ − ⋅ − ⋅  (24) 

 
where ir  is the growth rate of species i, iis  is the inhibitory effect of species i on itself (i.e. 
the intraspecific effects) and ijs  is the effect of species j on species i (i.e. interspecific 
effects). To determine whether one species wins in competition or whether there is 
coexistence, requires an equilibrium solutions to Eq. (23) and Eq. (24): 1 2 0dN dN

dt dt= =  at 

1 1N N∗=  and 2 2N N∗= . Using this assumption, allows Eqs. (23) and (24) to be expressed 
in the form: 
 

1 11 1 12 20 ( )lN r s N s N∗ ∗ ∗= ⋅ − ⋅ − ⋅  (25) 
 

2 2 22 2 21 10 ( )N r s N s N∗ ∗ ∗= ⋅ − ⋅ − ⋅  (26) 
 
At equilibrium, 
 

1 22 2 12
1

11 22 21 21 12

r s r s
N

s s s s s
⋅ − ⋅

=
⋅ − ⋅ ⋅

 (27) 

 
2 11 1 21

2
11 22 21 21 12

r s r s
N

s s s s s
⋅ − ⋅

=
⋅ − ⋅ ⋅

 (28) 

 
From Eq. (23), 1 0N∗ =  when 1

122
r

sN =  and 2 0N∗ =  when 1

111
r
sN = . From Eq. (24), 

1 0N∗ =  when 2

22
2 r

sN =  and 2 0N∗ =  when 2

21 1
r
sN = . 
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Four types of population behavior are possible depending on whether (i) 1 2

12 2 2 ,r r
s s> (ii) 

1 2

12 2 2
r r

s s<  (iii) 1 2

11 21
r r
s s>  and (iv) 1 2

11 21
r r
s s<  These invasion conditions can be represented 

graphically. 
 
If  1 1

2 2

2
2

r s
r s>  and 1 1

2 2

1
1

r s
r s>  species 1 wins out. If 1 12

2 22

r s
r s<  and 1 11

2 21

r s
r s<  species 2 wins out. If 

12 1 1

22 2 2

1
1

s r s
s r s< >  a stable equilibrium exists and the species coexist. If 11 1 1

21 2 2

2s r s
s r s< >  there is 

an unstable equilibrium such that if species are perturbed from the equilibrium, one of the 
species will ultimately become extinct. 
 

 
 
Figure 1. Conditions for coexistence and competitive exclusion. (a) Exclusion of 1N  by 

2N  as 2N  is the stronger competitor. (b) Exclusion of 2N  by 1N  as 1N  is the stronger 
competitor. (c) Unstable equilibrium: outcome of competition dependent on initial 

conditions. (d) Coexistence of 1N  and 2N . Blue line is the growth isocline for 1N  and 
red line is the growth isocline for 2N . 
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