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Summary 
 
This paper provides an overview of the use of mathematical models to explain the 
epidemiology of infectious diseases, and to assess the potential benefits of proposed 
control strategies. The development is broadly historical: beginning with the concept of 
mass action and compartmental models; proceeding through models for vector-born 
infections with special reference to malaria; touching on ideas arising in modelling the 
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population dynamics of macroparasites; and concluding with an examination of 
techniques for modelling transmission dynamics in structured populations. The 
treatment is deterministic throughout, some references for stochastic models are 
provided in the bibliography. 
 
1. Models for Infectious Diseases 
 
1.1 Historical Introduction 
 
The diseases that motivated the development of modern epidemiological theory are 
arguably those due to childhood infections, most notably measles. This arose 
predominantly from their large public health importance in the late 19th and early 20th 
century. In late 19th century England a sophisticated system of vital statistics had been 
initiated by William Farr, and data series relating to several childhood infections 
became available that were both reliable enough and long enough to generate 
hypotheses about the mechanisms underlying epidemic spread. It was only at this time 
that the germ theory of infection - the notion that certain infections are caused by living 
organisms multiplying within the host and capable of being transmitted between hosts - 
became firmly established, due to the work of Pasteur and others. 
 
The most striking aspect of measles epidemics, i.e. their regular cyclic behavior, was 
noticed first by Arthur Ransome around 1880.  Speculation about the underlying cause 
centered on the availability of sufficiently many susceptible individuals of the right age-
class in close enough proximity to each other, hence precursory ideas of critical 
community sizes for sustaining endemic measles were present. Two factors that 
commonly occur in many current models to investigate epidemic spread of measles and 
other infections are the age-structure of the population and the periodicity in contacts. 
The age and school season were recognized as important as early as 1896. William 
Hamer published a discrete time epidemic “model” for the transmission of measles in 
1906. His observation can be reformulated as stating that the incidence of new cases in a 
time interval is proportional to the product SI of the (spatial) density S of susceptibles 
and the (spatial) density I of infectives in the population. This assumption of mass 
action - in analogy to its origin in chemical reaction kinetics – is fundamental to the 
modern theory of deterministic epidemic modelling. The popularity of mass action is 
explained by its mathematical convenience and the fact that at low population densities 
it is a reasonable approximation of a much more complex contact process.  
 
1.2 The Concept of Mass Action 
 
The state variables in an epidemiological model correctly refer to population density 
rather than population size. Where the population is confined to a fixed area this 
distinction has no consequence. Consider a single susceptible individual in a 
homogeneously mixing population. This individual contacts other members of the 
population at the rate C (with units time-1) and a proportion I/N of these contacts are 
with individuals who are infectious. If the probability of transmission of infection given 
contact is β, then the rate at which the infection is transmitted to susceptibles is βCI/N, 
and the rate at which the susceptible population becomes infected is βCSI/N. 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS – Vol. III - Mathematical Models in Epidemiology - M. G. Roberts, J. A. P. Heesterbeek 

©Encyclopedia of Life Support Systems(EOLSS) 

The contact rate is often a function of population density, reflecting the fact that 
contacts take time and saturation occurs. One can envisage situations where C could be 
approximately proportional to N (which corresponds to mass action), and other 
situations where C may be approximately constant. Hence terms like βSI and βSI/N are 
frequently seen in the literature. For these, and in many instances where the population 
density is constant, the contact rate function C has been subsumed into β, which is now 
no longer a probability but a “transmission coefficient” with units time-1. 
 
1.3 The Size of an Epidemic 
 
Consider an epidemic that occurs on a timescale that is much shorter than that of the 
population, in other words regard the population as having a constant size and ignore 
births and deaths. Assume that upon recovery the individual remains immune. At any 
time the population consists of S susceptible individuals, I infected and R immune 
(removed). A simple model that describes the changes in these numbers with time is  
 
dS SIC
dt N

β= −                  (1) 

 
dI SIC I
dt N

β γ= −             (2) 

 
dR I
dt

γ=                  (3) 

 
The total size of the population, N = S + I + R is constant, and one of the above 
equations is redundant, as any two specify the third. Any steady state solution (S(t) = S*, 
I(t) = I*, R(t) = R*, ∀t) of equations (1 – 3) requires I* = 0, hence this model does not 
admit an endemic equilibrium with infection present. 
 
Now consider the passage of an epidemic through the population. Dividing equation (2) 
by equation (1) leads to 
 

1dI N
dS CS

γ
β

= −             (4) 

 
which may be integrated to obtain 
 

ln constantNI S S
C

γ
β

+ − =                    (5) 

 
Let the whole population be susceptible up to time zero, at which time a relatively small 
number I0  become infected. Hence S(0) = S0 = N – I0 and R(0) = 0. Following the 
passage of an epidemic limt→∞ I(t) = 0, limt→∞ S(t) = S∞, and the number that have been 
infected (final size of the epidemic) is S0 - S∞. These quantities satisfy the relationship  
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0 0

0
ln S S IS C

S N
β
γ

∞∞ − −⎛ ⎞= ⎜ ⎟
⎝ ⎠

              (6) 

 
Since the initial infection was small, I0 ↓ 0, and S0 ↑ N. Hence the proportion of the 
population that remains susceptible following the epidemic may be calculated from the 
so-called final size equation,  
 

0
ln 1S C S

S N
β
γ

∞ ∞⎛ ⎞= −⎜ ⎟
⎝ ⎠

                 (7) 

 
Equation (7) has the solution S∞ = N (no epidemic) and another solution for S∞ in the 
interval (0, N) if and only if βC > γ. Hence, in biological terms, a small introduction of 
infection to the population would create an epidemic if the basic reproduction ratio (R0 
= βC/γ) is greater than one. 
 
1.4 Compartmental Models 
 
A compartmental model is one for which the individuals in a population are classified 
into compartments depending on their status with regard to the infection under study. 
They are usually classified by a string of letters that provides information about the 
model structure. For example, the model specified by equations (1 – 3) would be called 
an SIR model, a compartmental model for infection transmission with an exposed (or 
latent) compartment (explicitly containing those infected but not yet infectious) and 
lasting immunity would be called an SEIR model, and situations where susceptibility 
can return after infection (or after immunity) would be called an SIS (or an SIRS) model. 
 
An example of an SEIR model, analogous to that of the previous section, is 
 
dS SIN C S
dt N

μ β μ= − −                  (8) 

 

( )dE SIC E
dt N

β σ μ= − +                    (9) 

 

( )dI E I
dt

σ γ μ= − +                    (10) 

 
An equation for R is superfluous here since N = S + E + I + R is constant. The model 
described by equations (8-10) is an extension of that described by equations (1-3), not 
only due to the introduction of an exposed class, but also because host births and deaths 
are explicitly included. 
 
System (8-10) has two steady states. The first, where S(t) = N and E(t) = I(t) = 0 for all t, 
corresponds to the situation with no infection present and the entire population 
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susceptible. The second  
 

( )( )*( )
N

S t S
C

σ μ γ μ
σβ

+ +
= =                     (11) 

 
* *( )E t E Iγ μ

σ
+

= =                    (12) 

 
*

*( ) 1N NI t I
C S

μ
β

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

                   (13) 

 
corresponds to an endemic steady state with constant numbers in the population 
infected. This is only biologically reasonable when S* < N, that is when  

( )( )0 1CR σβ
σ μ γ μ

= >
+ +

                   (14) 

 
where R0 is the basic reproduction ratio of the infection. 
 
The Jacobian matrix of system (8-10) is  
 

( )
( )

( )

/ 0 /
/ /

0

CI N CS N
J CI N CS N

μ β β
β σ μ β

σ γ μ

− + −⎛ ⎞
⎜ ⎟= − +⎜ ⎟
⎜ ⎟− +⎝ ⎠

                   (15) 

 
and local stability analysis determines that a steady state is stable when all eigenvalues 
of J have negative real parts when calculated using the steady state values for the 
dependent variables. Substituting the expressions for the steady states into equation (15) 
shows that the “no infection steady state” is stable when R0 < 1, and the “endemic 
steady state” is stable whenever it exists, that is when R0 > 1 
 
- 
- 
- 
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