
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

MATHEMATICAL MODELS – Vol. III - Mathematical Models in Demography and Actuarial Mathematics - Robert Schoen 
 

©Encyclopedia of Life Support Systems(EOLSS) 

MATHEMATICAL MODELS IN DEMOGRAPHY AND 
ACTUARIAL MATHEMATICS 
 
Robert Schoen 
Hoffman Professor of Family Sociology and Demography, Pennsylvania State 
University, USA 
 
Keywords: Life table, marriage squeeze, multistate population, population momentum, 
population projection, stable population, “two-sex” population model 

 
Contents 
 
1. Introduction 
2. Life Table Models 
2.1 Life Table Structure and Functions 
2.2 Actuarial Science 
2.3 Analytical Representations of Mortality 
3. Stable Populations 
3.1 The Stable Population Model in Continuous Form 
3.2 The Stable Population Model in Discrete Form 
3.3 Population Momentum 
3.4 Analytical Representations of Fertility and Net Maternity 
4. Multistate Population Models 
4.1 The Structure of Multistate Models 
4.2 Analytical Representations of Migration and First Marriage  
5. “Two-Sex” Population Models 
5.1 The “Two-Sex” Problem 
5.2 Analyzing the Marriage Squeeze 
6. Dynamic Population Models 
6.1 Population Projections 
6.2 Modeling Populations with Changing Rates 
Acknowledgements 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
Population models typically describe patterns of mortality, fertility, marriage, and/or 
migration, and depict how those demographic behaviors change the size and age 
structure of populations over time.  Demographic behavior in fixed rate, one-sex 
populations is quite well understood by means of existing demographic and actuarial 
models, principally the stationary population (life table), stable population, and 
multistate models.  Progress has been made on “two-sex” marriage and fertility models, 
though no consensus has been achieved.  Significant work has been done on modeling 
populations with changing vital rates, but such dynamic modeling is still in a relatively 
early stage. 
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1. Introduction 
 
Mathematical models of population date back at least to 1662, when John Graunt used 
parish records of birth and death to describe the demography of London, England and 
present the first example of a life table.  Fundamentally, population models are 
elaborations of the basic differential equation 
 

'    P m P= , (1) 
 
where P represents the number in the population of interest; P’ is the time derivative of 
P, i.e. how the size of the population changes over time; and m is a force of transition, 
or an instantaneous rate (or probability, or risk) of change with respect to the 
demographic behavior of interest.  The most common demographic behaviors are birth, 
death, marriage, divorce, and migration, though models have frequently been applied to 
many other topics, including educational enrollment, labor force status, and disability 
status.   
 
Population models have the great advantage of being logically closed, that is population 
size and composition (or stock) at one time can be found from the population stock at an 
earlier time and the demographic events (or flows) that occurred between those time 
points.  The classic expression of that closure is the so-called Vital Statistics Balancing 
Equation which, ignoring age and sex, can be written 
 

( 1)  ( )  ( ) - ( )  ( ) - ( )P t P t B t D t I t O t+ = + + , (2) 
 
where P(t) is the size of the population of interest  at the beginning of year t, B(t) is the 
number of births during year t, D(t) is the number of deaths during year t, I(t) is the 
number of inmigrants during year t, and O(t) is the number of outmigrants during year t.  
Fertility, mortality, and migration constitute the core demographic processes. 
 
Most demographic models employ two significant simplifications.  The first is that the 
models are deterministic, i.e. that they ignore chance fluctuations and focus on expected 
values of population behavior.  For example, the same rates of death always have the 
same impact on survivorship, with no chance (or stochastic) variability.  The second 
simplification is that within the categories specified, population heterogeneity is 
ignored.  Thus in a model that only recognizes age and sex, all persons of the same age 
and sex are at equal risk of experiencing an event (i.e. of “transferring”).  Population 
models are rooted in Markov processes, and embody the Markovian assumption that a 
person’s risk of transfer depends only on current characteristics, with past experiences 
having no effect.  While those assumptions are generally counterfactual, their practical 
importance varies greatly.   
 
2. Life Table Models 
 
2.1 Life Table Structure and Functions 
 
The basic life table model follows a birth cohort to the death of its last member.  More 
formally, there is only one living state, and the only recognized transfers are exits 
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(decrements) from that state.  At any exact age x, basic differential Eq. (1) can be 
written in the form 
 

( )  - '( ) / ( )m x P x P x= , (3) 
 
which defines m(x), the force of mortality (or decrement) at exact age x, to be minus the 
derivative of the natural logarithm of the change in the number of persons at exact age 
x.  Since the size of the life table cohort decreases monotonically, it is customary to use 
a minus sign so that the force [often written as µ(x)] is positive.  Let the initial size of 
the life table cohort, referred to as its radix, be designated by l(0).  Then Eq. (3) can be 
integrated to show that l(x), the number of survivors to exact age x, is given by 

0
( ) (0)exp ( )

x
l x l m y dy

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∫  (4) 

 

Eq. (4) is the basic solution for a life table, as it transforms rates of decrement m into 
probabilities of survival l(x)/ l(0).  As a practical matter, Eq. (4) can be implemented by 
choosing a simple functional form for m(x).  For single year age intervals, assuming that 
m(x) is constant within intervals is generally acceptable.   
 
An alternative approach, which has been termed the “General Algorithm” for life table 
construction, sets forth three sets of equations.  The first set, the flow equations, 
describe the permissible flows into and out of states.  In the basic life table, there is one 
flow equation which can be written  
 
( )  ( ) -  ( , )l x n l x d x n+ =  (5) 

 
where d(x,n) is the number of deaths (or decrements) between exact ages x and x+n.  Eq. 
(5) simply states that the number of survivors to exact age x+n is the number of 
survivors to age x less the number who exit the table between exact ages x and x+n.   
 
The second set of equations consists of orientation equations, which relate the observed 
rates of transfer to the model rates.  It is generally convenient and desirable to equate 
those sets of rates, hence the basic orientation equation is 
 

( , )  ( , )M x n m x n= , (6) 
 
where M(x,n) and m(x,n) refer, respectively, to the observed and model rates of transfer 
between exact ages x and x+n. 
 
The third set of equations is the person-year set of equations, which relate the number of 
survivors to each exact age to the number of person-years lived in an interval (where 
one person year is one year lived by one person).  The exact relationship is 
 

0
( , )    ( ) 

n
L x n l x u du= +∫ , (7) 
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where L(x,n) is the number of person years lived between exact ages x and x+n.  The 
General Algorithm shifts the task of making a life table from integrating the force of 
decrement function in Eq. (3) and then integrating the survivorship (l) function in Eq. 
(7), to simply integrating the survivorship function.  The General Algorithm also readily 
generalizes to specify more complex models (e.g. multistate models). Constructing a life 
table from a set of data involves, implicitly or explicitly, making two choices.  On is an 
assumption about how the observed rates relate to the life table rates; typically they are 
assumed to be the same.  The second concerns the functional form of either the force of 
decrement or the survivorship curve.  Many choices are possible.  The simplest choice 
for the survivorship curve is a linear relationship, that is 
 

( , )  ½  [ ( )  ( ) ]L x n n l x l x n= + + , (8) 
 
which is generally adequate for single years of age and for 5 year age intervals when the 
force of decrement is rising within the interval.  Many other choices are possible and 
often desirable, especially for intervals longer than one year or when the force of 
decrement is large.  The details of life table construction are discussed in the works 
cited in the bibliography.  While there is no “ideal” solution, many adequate methods 
are available. Table 1 provides an example of a life table, based on the experience of 
California Females during the year 1970, and shows the principal life table functions.  
The table is “abridged”, as age is shown for roughly every fifth year up to age 85.  Age 
1 is also shown as mortality in the first year of life is typically much higher than in the 
immediately following years.  In the past, age 85 was the highest age commonly shown 
in life tables, though with improved survivorship and better data for the high ages, many 
tables now show survival to age 90.  The next column is the survivorship column, which 
begins with the frequently used radix l(0)=100 000.  Of that number, 32 338 females 
survive to exact age 85.  Next is the d(x,n) column, calculable from Eq. (5), which 
shows the age distribution of decrements.  By definition, l(85)=d(85,∞).   
 
The probability of dying between exact ages x and x+n, denoted q(x,n), is shown in the 
fourth column, and is found from the relationship 
 

( , )  ( , ) /  ( )q x n d x n l x= . (9) 
 
The fifth column shows the life table decrement rates, m(x,n).  In terms of life table 
functions, they satisfy the relationship 
 

( , )  ( , ) /  ( , )m x n d x n L x n= . (10) 
 
The sixth column is often not presented, but can be quite useful.  It shows Chiang’s 
a(x,n), the average number of years lived between exact ages x and x+n by those 
decrementing (or dying) during the interval.  Mathematically, it must satisfy the 
equation 
 

( , )   ( )  ( , ) ( , )L x n n l x n a x n d x n= + +  (11) 
as the total number of person-years lived in an interval is the sum of the years lived by 
those who survive the interval and those who do not.   
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Age at 
Start 
of age 

interval 
(x) 

Number 
alive 

at start of
age 

interval
ℓ(x) 

Number of
deaths 
during 

age 
interval 
d(x,n) 

Probability 
of dying 
during 

age 
interval 
q(x,n) 

Average 
annual 

mortality 
rate during
age interval

m(x,n) 

Years lived in
interval by 

those 
dying in 
interval 
a(x,n) 

Number of
person-

years lived
during age 

interval 
L(x,n) 

Number of
person-

years lived
after age x, 

T(x) 

Expected 
years of 

life at start 
of 

age interval
e(x) 

0 100000 1568 0.015679 0.015905 0.097 98584 7566021 75.66 
1 98432 271 0.002755 0.000690 1.498 393050 7467437 75.86 
5 98161 135 0.001378 0.000276 2.489 490466 7074387 72.07 

10 98026 143 0.001462 0.000293 2.818 489813 6583921 67.17 
15 97882 342 0.003496 0.000700 2.655 488608 6094108 62.26 
20 97540 395 0.004051 0.000812 2.549 486732 5605500 57.47 
25 97145 437 0.004495 0.000901 2.606 484669 5118768 52.69 
30 96706 566 0.005850 0.001173 2.638 482208 4634099 47.92 
35 96143 825 0.008578 0.001723 2.670 478793 4151891 43.18 
40 95318 1245 0.013060 0.002628 2.686 473709 3673098 38.54 
45 94073 1937 0.020594 0.004159 2.663 465838 3199389 34.01 
50 92136 2760 0.029961 0.006078 2.652 454195 2733551 29.67 
55 89375 3945 0.044137 0.009016 2.629 437520 2279356 25.50 
60 85430 5187 0.060717 0.012503 2.631 414864 1841836 21.56 
65 80243 7207 0.089816 0.018760 2.635 384173 1426972 17.78 
70 73036 9862 0.135030 0.028841 2.644 341941 1042799 14.28 
75 63174 13998 0.221578 0.049580 2.604 282329 700858 11.09 
80 49176 16838 0.342400 0.082311 2.546 204565 418529 8.51 
85 32338 32338 1.000000 0.151139 6.616 213964 213964 6.62 

Source:  Adapted from R. Schoen and M. Collins (1973) Mortality By Cause:  Life Tables for California 1950-1970, Sacramento: State of 
California, Department of Public Health, p25.Of 100,000 born alive 
 

Table 1: Life Table for California Females, 1970. 
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The seventh column shows the number of person-years lived in every age interval.  The 
last entry, L(85,∞)= 213 964, gives the total number of person-years lived above age 85.  
The eighth column, T(x), shows the number of person-years lived at and above each 
exact age x, and is the sum of the L(x, n) column from age x through the highest age 
group in the table.  The last column, e(x), shows the expectation of life at age x, or the 
average number of years a person exact age x is expected to live.  In terms of life table 
symbols 
 

( )  ( ) /  ( )  / ( )ie x T x l x L l x= = ∑ , (12) 
 
where ΣLi indicates the sum of the person-years lived at and above exact age x.  For the 
highest age interval, e(85)=a(85,∞).  The most commonly used life table summary 
measure is e(0), the expectation of life at birth, here 75.66 years. 
 
To this point, the life table has been viewed as following the experience of a birth 
cohort, and showing the implications of a set of decrement rates on survivorship.  A 
second perspective needs to be recognized, a period perspective that gives rise to a 
stationary population.  Assume that age ω is the highest age attained in the life table (i.e. 
no one survives to attain exact age ω+1).  Now assume that the rates of decrement 
remain constant over time, and that for at least ω+1 consecutive years there are annual 
birth cohorts of l(0) persons.  The result is a stationary population, that is a population 
of constant size (specifically of T(0) persons) and of unchanging age composition.  The 
number of persons between the ages of x and x+n, at any time, is given by L(x,n).  The 
experience of the stationary population in one year captures that of the life table cohort 
over its entire lifespan.  Each year in the stationary population l(x) persons attain exact 
age x, there are d(x,n) deaths between the ages of x and x+n with a total of l(0) deaths, 
and there are L(x,n) person years lived between the ages of x and x+n giving a total of 
T(0) person-years lived. 
 
Life tables have been widely used to reflect mortality patterns, and are now routinely 
produced by most national statistical organizations.  The basic model can easily be 
generalized to recognize more than one cause of decrement.  Cause-of-death life tables, 
nuptiality-mortality life tables, and numerous other types of multiple decrement models 
have been constructed, and describe the implications of competing risks.  Cause-
eliminated life tables (also known as associated single decrement life tables) have also 
been calculated.  They can address the hypothetical question of how survivorship would 
change if one (or more) observed causes disappeared while the forces of decrement 
from the remaining causes remained unchanged. 
 
Various means have been used to deal with problems related to population 
heterogeneity.  Separate life tables are routinely prepared for males and females, and 
frequently recognize other characteristics such as geographical area or race/ethnicity.  
That approach, however, can quickly exhaust the data available for even a large 
population.  Proportional hazard (or Cox) models have been used to incorporate more 
covariates, though usually with the assumption that risks differ by a constant factor over 
age.  More sophisticated efforts have sought to explicitly model individual “frailty” (or 
susceptibility to death).  They have been hampered by the complexity of the problem 
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and the very limited empirical evidence available on the distribution of frailty, both 
between persons and over the life course. 
 
2.2 Actuarial Science 
 
Perhaps the leading use of the life table has been in the insurance and pension 
industries.  Actuarial science uses the life table, and other models reflecting life 
contingencies, to determine insurance and pension risks, premiums, and benefits.  In 
essence, actuarial methods combine the life table with functions related to an assumed 
fixed rate of interest.   
 
Let ι denote the annual rate of interest such that $1 at time t will increase to 1+ι dollars 
in exactly one year.  It is convenient to denote the present value of a dollar by v, where v 
represents the amount one must have at time t (under prevailing interest rate ι) in order 
to have $1 one year in the future.  In symbols, 
 

  1/  (1 )v ı= + . (13) 
 
It immediately follows that vn is the present value of $1 n years in the future.   
 
In its simplest form, a life annuity is a periodic series of payments, with the first 
payment of $1 due in one year, and the payments continuing annually as long as the 
recipient is alive.  Consider the present value of a life annuity payable to a person now 
exact age x.  The present value of the payment due in one year is v l(x+1)/l(x).  The 
present value of the payment due in two years is v2l(x+2)/l(x).  It follows that ax, the 
present value of a life annuity to a person exact age x is  
 

( ) / ( )j
x

j
a v l x j l x

⎡ ⎤
= +⎢ ⎥
⎢ ⎥⎣ ⎦
∑  (14) 

 
where summation index j ranges from 1 to the highest age in the life table.  [In ax, age is 
indicated by a subscript.  That is conventional in actuarial usage, and here serves to 
distinguish the life annuity from Chiang’s a function, defined in Eq. (11).] 
 
In its simplest form, a life insurance for a person exact age x is a payment of $1 made at 
the end of the year in which that person dies.  Combining an appropriate rate of interest 
and life table, and following the same logic as used in deriving Eq. (14), Ax, the present 
value of a life insurance for a person exact age x is 
 

1 ( ) / ( )j
x

j
A v d x j l x+⎡ ⎤

= +⎢ ⎥
⎢ ⎥⎣ ⎦
∑  (15) 

 
In practice, of course, Eqs. (13) - (15) are modified to deal with shorter intervals of 
time, more complex benefit options, and a variety of expense and other “loading” 
factors. 
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Insurance companies are quite conscious of “selection” factors, which motivate atypical 
persons to seek coverage.  An extreme but not unlikely example is a person recently 
diagnosed with a fatal disease who seeks to buy life insurance.  To gauge the size of 
those selection/population heterogeneity effects, actuaries have used “select and 
ultimate” life tables.  For example, in the United States, the Society of Actuaries has 
produced life tables with a 15 year select period.  That is, for the first 15 years of 
coverage, the risk of death is seen as depending on policy duration as well as age (and 
usually other characteristics such as sex).  After 15 years, when the selection effect is 
deemed negligible, mortality rates depend on age alone.  Tables that impose a second 
time varying parameter of that sort are known as semi-Markov models.  They are 
common in actuarial work, but infrequently encountered in demographic analyses. 
 
The life table, as a stationary population, is the basic model underlying benefit 
calculations.  The classic article by C.L. Trowbridge on pension funding viewed the 
participants in a “mature” pension plan as constituting a stationary population.  The 
“service” table commonly used by actuaries in benefit calculations is a multiple 
decrement life table where a steady stream of entrants to a benefit plan are followed 
over time subject to risks of death, withdrawal from employment, disability retirement, 
and “normal” retirement. 
 
- 
- 
- 
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