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Summary 
 
The societal reliance on mathematical models to support planning, technological 
innovation, engineering design, and business and development practices is greater than 
ever before in the history of civilisation. Furthermore, as availability of high-speed 
computing increases, this trend can only continue. Therefore, the question addressed in 
this contribution is not whether mathematical modeling is valuable or desirable—that is 
taken as self-evident—but rather, what are the key principles of best practice when 
mathematical models of life support systems are developed, implemented and used? The 
latter can, perhaps, be best understood by examining the independent nature of 
mathematical systems constituting a model and the consequent limitations when outputs 
of the model are applied in the “real world.” 
 
It is in this context that, in this introduction to the “Mathematical models” theme, we 
discuss three main questions: 
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1. Why do we resort to mathematical modeling of life support systems? 
2. What types of life support systems can be described by mathematical models? 
3. How is mathematical modeling done in, at least, the broadest possible conceptual 

terms? 
 
1. Introduction  
 
We begin this theme with the following excerpt from the famous “Cave Allegory” 
(from The Republic by Plato, 360 B.C., translated by Benjamin Jowett). 
 
AND now, I said, let me show in a figure how far our nature is enlightened or 
unenlightened: -–Behold! human beings living in a underground den, which has a 
mouth open towards the light and reaching all along the den; here they have been from 
their childhood, and have their legs and necks chained so that they cannot move, and 
can only see before them, being prevented by the chains from turning round their heads. 
Above and behind them a fire is blazing at a distance, and between the fire and the 
prisoners there is a raised way; and you will see, if you look, a low wall built along the 
way, like the screen which marionette players have in front of them, over which they 
show the puppets. 
 
I see. 
 
And do you see, I said, men passing along the wall carrying all sorts of vessels, and 
statues and figures of animals made of wood and stone and various materials, which 
appear over the wall? Some of them are talking, others silent. 
 
You have shown me a strange image, and they are strange prisoners. 
 
Like ourselves, I replied; and they see only their own shadows, or the shadows of one 
another, which the fire throws on the opposite wall of the cave? 
 
True, he said; how could they see anything but the shadows if they were never allowed 
to move their heads? 
 
And of the objects which are being carried in like manner they would only see the 
shadows? 
 
Yes, he said. 
 
And if they were able to converse with one another, would they not suppose that they 
were naming what was actually before them? 
 
Very   true. 
 
And suppose further that the prison had an echo which came from the other side, would 
they not be sure to fancy when one of the passers-by spoke that the voice which they 
heard came from the passing shadow? 
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No question, he replied. 
 
To them, I said, the truth would be literally nothing but the shadows of the images. 
That is certain. 
 
The rationale for selecting the above excerpt from The Republic is that it describes in a 
visual and emotive way what is arguably the essence of the challenge facing most of the 
modern era researchers involved in the mathematical modeling of life support systems. 
The challenge is that of creating a model whose outputs—Plato’s shadows of images—
correspond very closely (under a wide spectrum of inputs) to the measurements of the 
outputs of the real phenomenon being studied. For instance, a sound model of the spread 
of an epidemic in a population should be able to estimate the sizes of the different 
cohorts affected by the disease, at various stages of the epidemic. And yet the 
mathematical modeling cognoscenti will be conscious of the fact that even a best model 
of an epidemic is essentially distinct from the epidemic itself. It is more like a wooden 
figure of an animal in Plato’s parable than the animal itself.  
 
Despite the preceding cautionary allegory, the purpose of this contribution is to provide 
an introduction to the tremendous power of mathematical models—when properly 
applied—to provide insight to and understanding of many important phenomena. 
Nowadays, the success of mathematical models and their computer implementations is 
well documented and spans a wide spectrum of applications from image reconstruction 
in medical tomography, through spread of pollution in porous media, mathematical 
models for weather forecasting, to traffic flow models or large-scale production 
planning models.  
 
The societal reliance on mathematical models to support planning, technological 
innovation, engineering design, and business and development practices is greater than 
ever before in the history of civilisation. Furthermore, as availability of high-speed 
computing increases, this trend can only continue. Therefore, the question addressed in 
this contribution is not whether mathematical modeling is valuable or desirable—that is 
taken as self-evident—but rather: What are the key principles of best practice when 
mathematical models of life support systems are developed, implemented and used? The 
latter can, perhaps, be best understood by examining the independent nature of 
mathematical systems constituting a model and the consequent limitations when outputs 
of the model are applied in the “real world.” 
 
Interestingly, perhaps, the spectrum of applications is far wider than the spectrum of 
mathematical techniques used to generate these applications. For instance, a system of 
ordinary differential equations can be used to adequately model a range of very 
disparate phenomena (for example, a population of a colony of insects, or harmonic 
motion of a mass bouncing on a spring). Therein lies one of the great efficiencies of 
mathematical modeling: the understanding of a relatively small number of mathematical 
techniques enables one, at least in principle, to model and understand a vast array of 
phenomena. Nonetheless, researchers employing these techniques must be vigilant to 
never forget that—no matter how well a model fits the observed data—at a most 
fundamental level it is still a mathematical object whose “allegiance” is to the internal 
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consistency of the mathematical system and not to the external phenomenon that the 
researcher wishes it to model.  
 
Thanks to the above-mentioned efficiency of mathematical methods, it would have been 
possible to structure this theme around a strictly mathematical partition of the most 
widely used techniques such as algebraic equations, differential equations, statistical 
models, probabilistic models, simulation models and others. Each technique could then 
be discussed in some detail and illustrated with a number of successful applications. 
 
That approach to the “Mathematical models” theme would have minimized overlaps. It 
might also have appealed to some mathematicians by resembling a curriculum of an 
undergraduate applied mathematics major, but—in all likelihood—it would have been 
of very limited use to the diverse community of practitioners, researchers and students 
interested in the modeling of various aspects of life support systems. The main 
drawback with such a mathematical, approach to the theme would have arisen from a 
failure to communicate the context and purpose underlying the mathematical modeling 
undertaken in various disciplines. For the theme to be useful to a broad audience, a 
researcher in, say, ecology needs to be able to find an article written in the language 
used by ecologists and addressing issues relevant to ecologists. Only then will the 
mathematical models described in such an article communicate their intended meaning 
to the intended audience. 
 
In view of this, the nine topics of the “Mathematical models” theme represent broad 
categories of endeavor, relevant to the mission of the Encyclopedia, where there is 
already a large body of literature that exploits mathematical modeling to study 
phenomena and issues relevant to these topics. Thus for each of these topics there exists 
a community of practitioners, scholars and users with broad interest in that topic. It is 
hoped that members of these communities will find it easy, informative and rewarding 
to scan the EOLSS and the theme for the articles that are most relevant to them. 
 
Inevitably, this “user oriented” approach to the “Mathematical models” theme results in 
some inefficiencies and duplication. For instance, it would be reasonable to expect 
mathematical models of forest management to appear both in the topic devoted to 
biology and ecology and in the topic dealing with food and agricultural sciences. 
Furthermore, the mathematical methods used to construct these models may appear and 
be discussed, in necessarily similar terms, in a number of other topics as well. This is 
accepted as a necessary consequence of the principle that the theme is being developed 
to serve a wide interdisciplinary audience. 
 
In this introduction to the “Mathematical models” theme, we shall address three main 
questions: 
 
1. Why do we resort to mathematical modeling of life support systems? 
2. What types of life support systems can be described by mathematical models? 
3. How is mathematical modeling done in, at least, the broadest possible conceptual 

terms? 
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Arguably, the discussion of the above three questions will shed light only on what might 
be called the “classical” view of mathematical modeling. However, we live in an era 
where most educated people have easy access to many tools of mathematical modeling 
embedded in personal computers on their desks. Furthermore, it is an era where 
interdisciplinary teams regularly develop large mathematical models on a scale that 
would have been unthinkable until very recently. In some cases, the models themselves 
generate mathematical expressions that may or may not be detailed in the conventional 
way of being written down in a published book, manuscript, or even a technical manual. 
In recent years, the terms “computer models” and “numerical models” have been used 
frequently to name some of these modern models; thereby suppressing the fact that, at 
least internally, they consist of (possibly many) mathematical models. The technological 
advances that made these new classes of models possible open up many exciting 
opportunities as well as some inherent dangers. While it will be seen that advantages of 
the technological progress clearly outweigh the disadvantages, it will also be clear that 
we have entered an era where new issues concerning the nature and practice of 
mathematical modeling need to be examined and some of the old issues need to be re-
examined.  
 
It is in this context that we shall also discuss the very important issues of: 
 
(4) Understanding and managing uncertainty accompanying the use of mathematical 

models, and 
(5) The impact of the information technology “revolution” on both the practice and uses 

of mathematical modeling. 
 
In subsequent sections items 1–5 listed above will be discussed in more detail. 
 
2. Why Do We Resort to Mathematical Modeling of Life Support Systems? 
 
In the words of R. Isaacs (1979, p. 37), “The human mind is incapable of thinking other 
than about models.” Irrespective of whether one completely agrees with this statement, 
it would be hard to argue against a proposition that the desire to use models to help 
reduce the complexity of situations we face is fundamental to our way of thinking and 
analysis. It appears to be an innate human trait. It is sufficient to observe children 
playing with toy cars, dolls, or soldiers to be convinced of how natural it is for us to 
desire simple models of complex things that we encounter. 
 
However, even if we accept as innate the need to develop models so as to simplify 
complexity, this does not necessarily make the case for the use of mathematical models. 
After all, there are many other kinds of models that help reduce complexity, such as 
architects’ physical models of new cities, conceptual models such as those often used by 
psychologists, or evolutionary models used to explain the origins of Homo sapiens (for 
example, single versus multiple origin theories). These are all instances of very useful 
models of complex life support systems, interpreted broadly, which make little use of 
mathematics.  
 
The rationale for resorting to mathematical modeling probably stems from the 
underlying “dual nature” of mathematics as the science of relations as well as the 
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science of quantity. Thus whenever it is desirable to study both the quantifiable 
magnitude of effects and their relationship to one another (if any), the use of 
mathematics is almost an inevitable consequence. 
 
Of course, there is a legitimate argument that the role of mathematics in modeling 
phenomena is “merely” that of a language used to describe the knowledge and 
understanding of those who observe and study these phenomena. Indeed, this is the case 
with many mathematical models of physical phenomena. Furthermore, if that were the 
only role of mathematics in modeling, then it would be possible to argue that as it 
becomes increasingly easy to encode understanding of relations (for example, with the 
help of logical statements of any computer language) and quantities in computer files, 
the future role of mathematics in modeling will be greatly diminished. 
However, the fact that mathematics is also the science of relations means that the role of 
mathematics in modeling is deeper than that. Thanks to this fact, it is possible to take an 
initial mathematical statement that merely describes other scientists’ knowledge and 
transform it by a sequence of logically consistent operations to arrive at a new statement, 
or a model. The latter statement or model will be as true as the initial one but may 
exhibit a very new insight into the modeled phenomenon. In effect, by this process, the 
mathematical description acquires a status of a “theory,” in the sense that all logical 
consequences of the initial description become available as tools to either support or 
reject the theory. 
 
It is, perhaps, inevitable that as computer systems continue to evolve to imitate the 
processes of mathematical analysis and algebraic manipulation (as the many currently 
available symbolic manipulators already attempt), software packages will emerge that 
will—to varying degrees—automate the process of creating and transforming a 
mathematical model. We choose to call this new generation of models mathematical 
computer models, as distinguished from mathematical models merely implemented on a 
computer; and we shall discuss this issue in more detail later on. 
 
In addition to the previously mentioned capability to reduce complexity of real 
phenomena by extracting only certain essential features that are of interest, some 
mathematical models also have the capability to idealize “imperfect” real phenomena. 
Perhaps one of the most trivial examples of this is the equation of a circle: 
 
x2 + y2 = r2 

 
where r is the radius. While conceptually we may define a circle as a set of points 
equidistant from the centre point, we are incapable of constructing such an object or, 
indeed, of observing it in nature except to a certain degree of accuracy. And yet the 
equation constitutes a perfect, absolutely precise, description of a circle. In this case, if 
the equation is thought of as the model, then it is an idealized model, and all real world 
“circles” are, at best, approximations to such an “ideal” circle.  
 
Up to this point we have attempted to point to certain powerful and generic features that 
mathematical modeling has to offer. However, perhaps the single most compelling 
rationale—though not independent of the preceding ones—for the use of mathematical 
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models is historical. Mathematics is the universal language of science, engineering, and 
increasingly of other disciplines. 
 
Much of the recorded knowledge of physics and engineering is written in the form of 
mathematical models. These mathematical models form the foundations of our 
understanding of the universe we live in. Furthermore, nearly all of the existing 
technology, in one way or another, rests on these models. To the extent that we are 
surrounded by evidence of the technology working and being reliable, human 
confidence in the validity of the underlying mathematical models is all but unshakable. 
Even when revolutions in physics such as Einstein’s discovery of relativity take place, 
they merely re-emphasize that the old Newtonian models work exceedingly well in the 
parameter ranges in which we could normally wish to use them. 
 
However, it is not only the long history of success of mathematical models in sciences 
that provides strong support for their continued use. The rationale for their continued 
and even much expanded role is stronger than ever because of the revolution in high-
speed computing. The latter has been accompanied by a revolution in algorithms for 
numerically solving, at great speed, larger and more complex systems of equations, 
which in turn opens up the opportunity of modeling increasingly complex phenomena. 
 
In recent years we have witnessed the emergence of very sophisticated models: both 
local short-term models of weather prediction, and coupled ocean–atmosphere models 
of global climate change. The numerical solution of the underlying systems of equations, 
considered impossible not long ago, has now become possible due to the combination of 
powerful computers and powerful algorithms. This combination of algorithmic and 
computational power is providing a tremendous impetus for a much expanded role of 
mathematical modeling, and brings with it many opportunities, as well as some dangers 
that will be discussed later on in this introduction and in many other places across the 
theme. 
 
To summarize this section we observe that the following are among the key drivers 
providing the rationale for continued and even expanded role of mathematical modeling 
of life support systems: 
 
• the dual nature of mathematics as the “science of relations” as well as the “science 

of magnitude” 
• the inherent ability of a mathematical model to provide a “theory” describing the 

modeled phenomenon 
• the inherent ability of mathematics to reduce complexity by modeling only a few of 

the most relevant characteristics of the problem 
• the ability of mathematics to create idealized models that serve as benchmarks for 

physical entities 
• the historical role of mathematics as the universal language of science and 

engineering 
• the opportunities presented by the combined power of algorithms and high speed 

computing. 
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