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Summary 
 
The methods of integral transforms are very efficient to solve and research differential 
and integral equations of mathematical physics. These methods consist in the integration 
of an equation with some weight function of two arguments that often results in the 
simplification of a given initial problem. The main condition for the application of an 
integral transform is the validity of the inversion theorem which allows one to find an 
unknown function knowing its image. The Fourier, Laplace, Mellin, Hankel, Meyer, 
Hilbert, and other transforms are used depending on a weight function and an 
integration domain. With the help of these transforms many problems of the oscillation 
theory, heat conductivity, neutron diffusion and slowing-down, hydrodynamics, the 
elasticity theory, and physical kinetics can be solved. 
 
1. Introduction 
 
An integral transform is a functional transform of the form 
 

( ) ( , ) ( )F x K x t f t dt
Γ

= ∫ , 

where Γ  is a finite or infinite contour in the complex plane, ( , )K x t is the kernel of a 
transform. The most frequently considered integral transforms are those for which 

( , ) ( )K x t K xt= and Γ  is the real axis or its part ( , )a b . If ,a b−∞ < < ∞ , then a transform 
is referred to as a finite integral transform. Formulae that allow us to reconstruct a 
function ( )f t  by a given one ( )F x  are said to be inversion formulae of integral 
transforms.  
 
If , nx t R∈  and Γ  is a domain in the n-dimensional Euclidean space, then multiple 
(multidimensional) integral transforms are considered.  
 
Integral transforms are frequently applied when solving differential and integral 
equations and their choice depends on the type of a considered equation. The main 
condition when choosing an integral transform is the possibility to reduce a differential 
or integral expression to a more simple differential equation (or, what is better, to an 
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algebraic ratio) with respect to a function ( )F x  implying that an inversion formula is 
known. If a contour Γ  is finite (for example, a segment), then a transform ( )F x  is 
called a finite transform of ( )f t . It is obvious that the number of integral transforms can 
be considerably increased by introducing new kernels.  
 
In the following we mainly consider transforms where a contour Γ  is the real axis or 
real semiaxis supposing that all integrals are finite. 
 
2. Basic Integral Transforms 
 
2.1. The Fourier Transform  
 
The expression 
 

1( ) [ ] ( )
2

ixF x f e f dτ τ τ
π

∞
−

−∞

≡ = ∫F  

 
is called the Fourier transform of a function ( )f t . 
 
A function ( )F x  is called the Fourier image of a function f . The inverse Fourier 
transform has the form 
 

1 1( ) [ ( )] ( )
2

itxf t F x e F x dx
π

∞
−

−∞

≡ = ∫F . 

 
Combining these expressions, we come to the exponential Fourier formula 
 

1( ) ( )
2

it ixf t e e f d dxτ τ τ τ
π

∞ ∞
− −

−∞ −∞

= ∫ ∫ ,       (1) 

which is equivalent to the integral Fourier formula 
 

0

1( ) ( )cos( ( ))f t dx f x t dτ τ τ
π

∞ ∞

−∞

= −∫ ∫ . (2) 

 
Rearranging the cosine of difference, we obtain the identity 
 

0

( ) [ ( ) cos( ) ( )sin( )]f t a x tx b x tx dx
∞

= +∫ , (3) 

 
where 
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1 1( ) ( ) cos , ( ) ( )sina x f t xt dt b x f t xt dt
π π

∞ ∞

−∞ −∞

= =∫ ∫ . 

 
If ( )f t  is an even function, then the formula (3) takes the form 
 

0 0

2( ) cos ( ) cosf t tx du f x dτ τ τ
π

∞ ∞

= ∫ ∫ . (4) 

 
Similarly, if ( )f t  is an odd function, then 
 

0 0

2( ) sin ( )sin .f t tx dx f x dτ τ τ
π

∞ ∞

= ∫ ∫  (5) 

 
Conditions on a function f , whereby the formulae (1), (2) are valid, and the direct and 
inverse Fourier transforms are determined in the following theorem, where ( , )L −∞ +∞  
denotes a space of functions intergrable in the sense of Lebesgue over ( , )−∞ +∞ . 
 
Theorem 1. Assume that ( , )f L −∞ +∞∈  is a function with a bounded variation on any 
finite interval. Then the formulae (1), (2) are valid if we replace their left-hand sides by 
[ ( 0) ( 0)] / 2f t f t+ + −  at the points of discontinuity of ( )f t . 
 
2.1.1. Basic Properties of the Fourier Transform 
 
If a function ( )f t  is integrable over the interval ( , )−∞ ∞ , then a function ( )F x  exists for 
all t . The functions ( )F x  and ( )f t , the former being the Fourier transform of the latter, 
are together called a couple of the Fourier transforms (or a Fourier transform pair). 
Assume that 
 

0

2( ) ( ) coscF x f t xt dt
π

∞

= ∫ , (6) 

 
then from the formula (4) it follows that  
 

0

2( ) ( )coscf t F x tx dx
π

∞

= ∫ . (7) 

 
The functions connected in such a way are called a couple of the Fourier cosine-
transforms. Similarly, from the formula (5) we can obtain a couple of the Fourier sine-
transforms: 
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0

2( ) ( )sinsF x f t xt dt
π

∞

= ∫ , (8) 

 

0

2( ) ( )sinsf t F x tx dx
π

∞

= ∫ . (9) 

 
If ( )f t  is an even function, then 
 

( ) ( )cF x F x= ; 
 
if ( )f t  is an odd function, then 
 

( ) ( )sF x iF x= . 
 
Let the functions ( )F x  and ( )G x  be the Fourier transforms of functions ( )f t  and ( )g t  
determined by the formulae (6), (7), respectively. 
 
The functions 
 

( ) ( )F u G u and 1( ) ( ) ( )
2

h t g f t dτ τ τ
π

∞

−∞

= −∫  

 
are a couple of the Fourier transforms. The function ( )h t  is called a convolution of 
functions ( )f t  and ( )g t  and is denoted by as h f g g f= ∗ = ∗ . 
 
Theorem 2 (about convolution). Let , ( , )f g L −∞ ∞∈ . Then ( ) ( )h t f g t= ∗  belongs 
to ( , )L −∞ ∞ , and the function 2 ( ) ( )F x G xπ  is its Fourier transform. Conversely, the 
product 2 ( ) ( )F x G xπ  belongs to ( , )L −∞ ∞ , and its Fourier transform is ( )f g t∗ . 
The Parseval formulae. Assume that ( ) ( , )f t L −∞ ∞∈ , is intergrable over any finite 
interval, and  

1( ) lim ( )
2

l
x

l
l

G x g e dττ τ
π

−

→∞
−

= ∫  

 
for all x , moreover, ( )G x is finite everywhere and belongs to ( , )L −∞ ∞ . Then the 
Parseval equality 
 

( ) ( ) ( ) ( )F x G x dx f t g t dt
∞ ∞

−∞ −∞

= −∫ ∫ .      (10) 

 
holds. In particular, for f g=  we have the Parseval formula 
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2 2| ( ) | | ( ) |F x dx f t dt
∞ ∞

−∞ −∞

=∫ ∫ .      (11) 

 
2.1.2. The Multiple Fourier Transforms 
 
By definition we have 
 

1( ) [ ( )] ( )
2

ixtF x f t e f t dt
π

∞ ∞
−

−∞ −∞

≡ = ∫ ∫F , 

 
where 1 2 1 2 1 1 2 2 1 2( , ), ( , ), ,x x x t t t xt x t x t dt dt dt= = = + = . The function ( )F x  is called 
the Fourier transform of a function ( )f t  of two variables. For functions ( )f t  and ( )F x , 

that belongs to 2( )L R , the following inversion formula holds: 
 

1 1( ) [ ( )] ( )
2

ixtf t F x e F x dx
π

∞ ∞
−

−∞ −∞

≡ = ∫ ∫F . 

 
If , nx t R∈ , then 
 

/ 2 / 2
1 1( ) ( ) , ( ) ( )

(2 ) (2 )
n n

ixt ixt
n nR R

F x e f t dt f t e F x dx
π π

−= =∫ ∫ . 

 
2.2. The Laplace Transform 
 
2.2.1. The Laplace Integral 
 
Let ( )f t  be a function of real variable , 0t t≤ < +∞ , intergrable in the sense of 
Lebesgue over any finite interval (0, )A . Let p  be a complex number. The function  

0

( ) [ ( )] ( )ptF p f t e f t dt
∞

−≡ = ∫L  (12) 

 
is called the Laplace transform of a function ( )f t . 
 
2.2.2. The Inversion Formula for the Laplace Transform  
 
Using the definition of the Laplace transform and assuming that p iyγ= + , from (1), 
(12) we obtain: 
 

0

( ) [ ( )]
iw w

pt t ity

iw w

e F p dp ie e dy e e f d
γ

γ γτ γτ

γ

τ τ
+ + ∞

− −

− −

=∫ ∫ ∫ . (13) 
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But according to (1) for w →∞  the double integral in the right-hand side of the 
equation (13) is equal to 2 ( )te f tγπ −  for 0t >  and to zero for 0t < . Therefore the 
equation (13) gives  
 

1( ) lim ( )
2

iw
pt

w
iw

f t e F p dp
i

γ

γπ

+

→∞
−

= ∫  (14) 

 
for 0t >  and zero for 0t < . The expression (14) is the inversion formula for the Laplace 
transform. A function ( )f t must satisfy conditions providing the existence of the 
Laplace transform (12) and γ  must be greater than a real part of any singular point of 
the Laplace image ( )F p . 
 
2.2.3. Limit Theorems 
 
The following statements (limit theorems) are valid 
 
(1) if ( )F p  is the Laplace transform and ( ( ))f t′L  exists, then  
 
lim ( ) (0 0)
p

pF p f
→∞

= + ; 

 
(2) if, besides, there exist a limit of ( )f t  as t →∞ , then  
 

0
lim ( ) lim ( )
p t

pF p f t
→ →∞

= . 

 
2.3. The Mellin Transform 
 
The Mellin transform 

1

0

( ) [ ( )] ( ) ,sF s f t f t t dt s iσ τ
∞

−≡ = = +∫M  (15) 

 
is closely connected with the Fourier and Laplace transforms.  
 
The Mellin transform can be successfully applied when solving a certain class of plain 
harmonic problems in a sectorial domain, problems of the elasticity theory, and also 
when studying special functions, summing series, and calculating integrals. The 
theorems concerning the Mellin transform can be obtained from the corresponding 
theorems for the Fourier and Laplace transforms by the change of variables. 
 
Laplace transforms by the change of variables. 
 
Theorem 4. Let 1 ( ) (0, )t f t Lσ − +∞∈ . Then the following inversion formula holds:  
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTATIONAL METHODS AND ALGORITHMS – Vol. I - Methods of Integral Transforms - V. I. Agoshkov, P. B. 
Dubovski 

©Encyclopedia of Life Support Systems (EOLSS) 

( 0) ( 0) 1 lim ( )
2 2

i
s

i

f t f t F s t ds
i

σ λ

λ
σ λπ

+
−

→∞
−

+ + −
= ∫ , (16) 

 
where the Mellin image ( )F s  is defined in (15). 
 
Theorem 5. Let [ ], [ ]F f G g= =M M  Let  
 
either 1 ( ) (0, ), (1 ) ( , )kt f t L G k ix L− +∞ − − −∞ +∞∈ ∈ ,  
 
or ( ) ( , ), ( ) (0, )kF k ix L t g t L+ −∞ +∞ +∞∈ ∈ . Then  
 

0

1 ( ) (1 ) ( ) ( )
2

k i

k i

s G s ds f t g t dt
iπ

+ ∞ ∞

− ∞

− =∫ ∫F . (17) 

 
Besides, the following relation holds: 
 

0

1 1( ) ( ) ( )
2

k i

k i

dtF s G s ds g t f
i t tπ

+ ∞ ∞

− ∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ ∫ . (18) 

 
Theorem 6 (about convolution). Assume that ( )kt f t  and ( )kt g t  belong to (0, )L +∞  
and  
 

0

( ) ( ) t dh t f g ττ
τ τ

∞
⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ . 

 
Then ( ) (0, )kt h t L +∞∈  and its Mellin transform is ( ) ( )F s G s . 
 
- 
- 
- 
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