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Summary  
 
In computational mathematics, the ideas and approaches are aimed at construction and 
investigation of methods for solving problems of mathematical physics. A feature of 
these methods is that a problem to be solved is replaced by another one with a finite 
number of unknown parameters. With a knowledge of these parameters, it is possible to 
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calculate an approximate solution. Replacing a given problem by a new (but related) 
one with a finite number of unknowns is called discretization and a number of methods 
may be used for this purpose. Such methods are often called methods for the 
approximate solution of a given problem.  
 
In this chapter several classes of discretization methods are considered and some 
theoretical results are presented.  
 
1. Introduction  
 
Often we can solve a problem of mathematical physics only by a numerical method. 
The construction of algorithms to obtain an approximate solution of a problem with 
specified accuracy is the subject of computational mathematics.  
 
Notice that methods of computational mathematics, as a rule, yield approximate results. 
Another feature of these methods is that calculations can be performed only on a finite 
number of quantities and a number of obtained results is finite as well. Because of this, 
a problem to be solved must be reduced to such a form that all results can be obtained in 
a finite number of arithmetical operations. Replacing a given problem by another (but 
related) one with a finite number of unknowns is called the discretization of a problem.  
 
Consider some properties which are required of discretization methods (approximate 
methods of computational mathematics). One of these properties is consistency 
characterizing the accuracy of the approximation of an equation to be solved by a finite 
system of equations whose solution is assumed to be an approximate solution of an 
original equation. The study of consistency in discretization methods is closely related 
to a special field of mathematics called the theory of the approximation of functions 
which is of great importance in computational mathematics.  
 
Another characteristic of discretization methods is the possibility to find the unknown 
quantities within prescribed accuracy. Methods satisfying this property are said to be 
convergent. Let u  be an exact solution of a problem. Assume that with the help of some 
method we obtained a sequence 1 Nu … u, ,  of approximations to u . One of the major 
problems arising now is to establish the convergence of approximate solutions to the 
exact one, i.e., whether Nu u→  as N →∞ , and, if this is not always the case, to 
determine conditions under which the convergence takes place.  
 
Once convergence has been established, we face a more difficult problem concerning 
the estimation of the rate of convergence, i.e., the estimation of how much fast Nu  
converges to u  as N →∞ . For this purpose an estimate of the form ( )Nu u Nε| − | ≤  
called the error estimate is often constructed. The rate of convergence is one of the 
factors that determine computational cost of a method.  
 
One more important property of approximate methods is numerical stability. In 
computation round-off errors may have a dramatic effect on the final results, i.e., the 
error of approximate solution may increase to a considerable degree. This indicates that 
a numerical algorithm is unstable. If round-off errors are not accumulated and, hence, 
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have no appreciable effect on results of computations, an algorithm is considered to be 
stable.  
 
2. Finite Difference Methods  
 
The finite difference methods are among the most popular methods for the numerical 
solution of various problems of mathematical physics. In these methods, in a domain of 
a solution a grid is constructed and we look for a solution on this grid. To determine the 
values of an unknown grid function (i.e., a function defined at nodes of a grid) a system 
of scalar equations is constructed. A solution of this system is taken to be an 
approximate solution of a given problem. One way to construct this system of scalar 
equations is to approximate derivatives, that enter into a differential equation to be 
solved and into boundary conditions, by difference relations. The name “finite 
difference methods" arose from this way of discretization.  
 
2.1. The Grid Method  
 
2.1.1. Basic Ideas of the Method  
 
To present basic ideas of the grid method, we begin with its application to a simple 
linear boundary value problem for an ordinary differential equation.  
For a x b≤ ≤  we consider the boundary value problem  
 

( ) ( ) ( ) ( ) ( ) 0Au u q x u f x x a b u a u b′′≡ − + = , ∈ , , = = ,   (1) 
 
where ( ) 0q x ≥ . Assume that (1) has a unique solution which is continuous on [ ]a b,  
and has continuous derivatives up to the fourth order.  
 
The grid method for the problem (1) as well as for many other problems is as follows.  
 
(1) The domain of the differential equation (1) (the segment [ ]a b, ) is replaced with 
some discrete (grid) domain. This means that on [ ]a b,  some points are taken. A set of 
these points is called a grid, although the term normally refers specifically to a domain 
of dimension more than one.If these points are taken by the rule 

0 1 , ( )kx a kh k … N h b a N= + , = , , , = − /  then the grid is said to be uniform. A point kx  
is a node of the grid.  
(2) On the set of nodes of a grid the boundary value problem (1) is replaced by some 
grid problem. The term grid problem implies some relations between approximate 
values of a solution of (1) at the nodes. Here, this is a system of linear algebraic 
equations.  
(3) A solution of a grid problem is obtained by using some numerical method; thus 
approximate values of the solution of the boundary value problem at the nodes of the 
grid are determined. This is the final objective of the grid method.  
 
We note the following questions being the basic ones in the grid method.  
 
(a) How can we replace the domain of a differential equation (together with the 
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boundary in the case of a partial differential equation) by some grid domain?  
(b) How can we replace a differential equation and boundary conditions by some grid 
relations?  
(c) Will a grid problem be uniquely solvable, stable, and convergent?  
 
We explain the last two terms and give the answers to these questions using the problem 
(1) as an example.  
 
The construction of a difference scheme. Take a uniform grid  
 

0 1 ( )kx a kh k … N h b a N= + , = , , , , = − / .  
 
Consider Eq.(1) at the interior nodes only, i.e., at the points 1 1kx k … N, = , , − :  
 

( ) ( ) ( ) ( ) 1 2 1
kx x k k k kAu u x q x u x f x k … N= ′′| = − + = , = , , , − .  

 
Express the derivatives, which enter into the differential equation, in terms of the values 

( )ku x  at the nodes using the corresponding finite difference relations:  
 

(1) (1) (1) (1)1
1

( ) ( )
( ) ( ) ( ) ( )

2
k k

k k kk k k k
u x u x hu x r h r h u x x x x

h
−

−
−

′ ′′= + , = , < < ;  

 
(2) (2) (2) (2)1

1
( ) ( )

( ) ( ) ( ) ( )
2

k k
k k kk k k k

u x u x hu x r h r h u x x x x
h

+
+

−
′ ′′= + , = − , < < ;  

 
2

(3) (3) (3)1 1( ) ( )
( ) ( ) ( ) ( )

2 6
k k

k k k k
u x u x hu x r h r h u x

h
+ −−

′ ′′′= + , = − ,  

 
(3)

1 1k kkx x x− +< < ;  
 

(4)1 1
2

( ) 2 ( ) ( )
( ) ( )k k k

k k
u x u x u x

u x r h
h

+ −− +
′′ = + ,   

 
2

(4) (4) (4)
1 1( ) ( )

12
IY

k kk k k
hr h u x x x x− += − , < < .  

 
Notice that in the case of more complicated boundary conditions involving 

0( ) ( )Nu x u x′ ′,  we can use the following finite difference representations:  
 

22 1 0
0

( ) 4 ( ) 3 ( )
( ) ( )

2
u x u x u x

u x O h
h

− + −
′ = + ,  
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21 23 ( ) 4 ( ) ( )
( ) ( )

2
N N N

N
u x u x u x

u x O h
h
− −− +

′ = + .  

 
Taking into account these finite difference relations, for (1) (in this case we use the 
expression for ( )ku x′′  only) we obtain  
 

( ) ( ) ( )
kx x h k k kAu A u x R h f x=| ≡ − = ,  

 
where  
 

(4)1 1
2

( ) 2 ( ) ( )
( ) ( ) ( ) ( ) ( )k k k

h k k k k k
u x u x u x

A u x q x u x R h r h
h

− +− + −
= + , = .  

 
If ( )kR h  satisfies the condition 2( ) 1 2 1kR h Mh k … N| |≤ , = , , , − ,  where const.M =  
does not depend on h , then a difference operator hA  is said to be second-order 
consistent with a differential operator A  with respect to h .  
 
Let h  be sufficiently small. Then ( )kR h  can be neglected to yield  
 

( ) 1 2 1h k kA u f x k … N= , = , , , − .  (2) 
 
Under some conditions we can suppose that ( ) 0 1 2iu u x i … N≈ , = , , , , . Generally 
speaking, we always have ( )i iu u x≠  and only for ( ) 0kR h ≡  it would be expected that 

( ) 0 1 2i iu u x i … N= , = , , , , . The equality (2) is called a difference scheme approximating 
the equation ( )Au f x= .  
 
Notice that (2) is a system of 1N −  linear algebraic equations with a triangular matrix. 
The number of unknowns 0 1 Nu u … u, , ,  is equal to 1N + .  
 
Taking into consideration the boundary conditions in (1), we get the simplest (in this 
case) additional equations  
 

0 0 0Nu u= , = .  (3) 
 
The formulae (2) and (3) represent a system of 1N +  linear algebraic equations in 
unknowns 0 Nu … u, , . Sometimes (as in the case of the considered problem) some of 
these unknowns can be determined from the “boundary equations" of the type (3) that 
results in a problem for 1N −  unknowns 1 2 1Nu u … u −, , , . In other cases we can express 

0 Nu u,  in terms of 1 1Nu … u −, ,  from boundary equations. Substituting these expressions 
into (3) in place of 0 Nu u, , we again arrive at a system of equations in 1 2 1Nu u … u −, , , . It 
should be noted that in the latter case an operator hA  and right-hand sides in (2) may be 
modified.  
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Solving the system (2) and (3) by some algorithm we can expect that 

( ) , 0 1k ku x u k … N≈ = , , , .  
 
Solvability of a system of difference equations. In the grid method, an approximate 
solution of the given problem is calculated as a solution of a system of difference 
equations.  
 
Let us study solvability of these equations using the system (2) and (3) as an example. 
Here from the “boundary equations" we have 0 0 0Nu u= , = .  Therefore we consider (2) 
for 1 1Nu … u −, . If 0( ) const 0q x q≥ = >  then the matrix of (2) has diagonal dominance; 
for any { ( )}kf x  the system (2) has a unique solution { }ky , moreover,  
 

0

1max max ( )k kj k
y f x

q
| |≤ | | .  

 
It follows from this inequality that the scheme (2) is stable with respect to possible 
errors in the values { ( )}kf x .  
 
A solution of (2) can be obtained by well-known Gauss elimination which, in the case 
of a system with a triangular matrix, is also called the sweep or factorization method.  
 
Error and convergence estimates for the grid method. We consider these questions for 
the problem (1). Let ( )k k ku x uε = − ,  

0
( ) max kk N
hε ε

≤ ≤
= | | . The grid method is said to be 

uniformly convergent, if ( ) 0hε →  as 0h → . For (1) we have a system of the form  
 

0( ) 1 2 1 0h k k NA R h k … Nε ε ε= , = , , , − , = = .  
 
Assuming that an exact solution of (1) has bounded fourth-order derivatives, we have 

2( )kR h Mh| |≤ . Since a matrix of a system for errors { }kε  has diagonal dominance, we 
conclude that the estimate  
 

2

0

1max 0kk
Mh

q
ε| |≤ →  

 
provides second-order convergence of the grid method in this case.  
 
To study basic problems of the grid method in more complicated cases, various 
approaches and results developed in the theory of this method (maximum principle, 
comparison theorems etc.) are used.  
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