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1. Introduction 
 
1.1. Motivation 
 
Numerous problems from physics can be modeled by partial differential equations. Let us 
illustrate it by a simple example. 
 
An elastic membraneΩ  is a planar bounded domain glued to a rigid curveΓ , but a 
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force ( )f dx x presses on each surface element 2d d=dx x x1 . The vertical membrane 
displacement is represented by a real valued function ,u which is the solution of Laplace’s 
equation: 
 

2( ) ( ), ( , )f− = =Δu x x x x x1 ∈Ω,       (1.1) 
 
where the Laplace operator Δ is defined by: 
 

2 2

2 2
2

.= +
∂ ∂

Δ
∂ ∂

u u
u

x x1

 

 
As the membrane is glued to the curveΓ , the functionu satisfies the following boundary 
condition: 
 

( ) , .= Γu x x0 ∈ �        (1.2) 
 
This is the homogeneous Dirichlet problem for the Laplace equation. 
Our aim here is to show that problem described by Eqs.(1.1)-(1.2) has a unique solution 
(in a sense to define). In order to answer this question, we use a general approach based on 
a variational formulation of this boundary value problem. 
 
1.2. Principle of the Method 
 
Let us briefly describe the method, without going into the details, as they form the object 
of the present chapter. Let us suppose that the problem described by Eqs.(1.1)-(1.2) has a 
“smooth” solution u (for example, twice differentiable). Let v  be any arbitrary function in 
the space ( )D Ω of indefinitely differentiable functions with compact support inΩ . We 
multiply Equation (1.1) by ( )v x and integrate with respect to x over Ω ( f is supposed to 
be continuous, for example); this gives: 
 

( ) ( ) ( ) ( ) .d f d− =∫ ∫Δuv x x v x x
Ω Ω

 

 
Let us recall Green’s formula (Ω is bounded here) 
  

( ) ( ) ( ) ( ) ( )( ) ( ),d d d= − ⋅ +∫ ∫ ∫Γ
∂

Δ ∇ ∇ Γ
∂
u

uv x x u v x x v x x
Ω Ω ν

  (1.3) 

 
which is nothing but the generalization of the integration by parts formula in one 
dimension. In this formula, ( )∇u x is the gradient of u  at 2( , ),=x x x1 i.e., a vector with 
components 2( )( ), ( )( )∂ ∂ ∂ ∂u x x u x x1 and ( ) ( )⋅∇ ∇u x v x denotes the inner product in 

2R of vectors ( )∇u x and ( ),∇v x i.e., 
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2 2
( ) ( ) ( ) ( ) ( ) ( );⋅ = +

∂ ∂ ∂ ∂
∇ ∇

∂ ∂ ∂ ∂
u v u v

u x v x x x x x
x x x x1 1

 

 
finally, ( )dΓ x denotes the measure on Γ and ( ) ( ) ( ),= ⋅∂

∂ ∇u x u x xν ν where ( )xν is the unit 
normal at x of Γ oriented towards the exterior of Ω (Ω is a bounded open set with a 
Lipschitz-continuous boundary, according to Grisvard’s definition [5], so that this normal 
exists almost everywhere (a.e.) on Γ ). Using (1.3) allows us to transform the equation in 
the following way: 
 

( )( ) ( )( ) ,d f d⋅ =∫ ∫∇ ∇u v x x v x x
Ω Ω

 

 
since =Γv | 0 . We shall in fact study this new equation, noting that it makes sense for far 
less regular functions ,u v (and also f ). 
The variational problem is: 
 
find Hu ∈  such that for all ,Hv ∈  ( , ) ( ),L=u v vA    (1.4) 
 
where the bilinear form A and the linear form L are defined by: 
 

( , ) ( ) ( ) , ( ) ( ) ( ) .d L f d= ⋅ =∫ ∫∇ ∇u v u x v x x v x v x xA
Ω Ω

 (1.5) 

 
The functional space H (of Sobolev type) will be explained later.  
The strategy is as follows: in order to show that the boundary value problem (1.1)-(1.2) 
has a solution, we first show its equivalence with the variational problem (1.4)-(1.5), then 
we show that the variational problem has a unique solution. The precise definition of the 
space H also belongs to the variational strategy; in order to construct it, we need some of 
the results contained in the next Section.  
 
2. The Variational Method  
 
2.1. The Functional Framework 
 
We introduce the notation and review some useful results (without proofs) concerning the 
Sobolev spaces. For an introduction to Sobolev spaces and to the theory of distributions, 
we refer for example to [1], [3], [8]. 
 
Let Ω be an open subset in nR . We first denote by 2 ( )L Ω the space of real valued 
measurable functions which are square integrable on Ωwith respect to the Lebesgue 
measure. This space is a Hilbert space with the scalar product defined by  
 

2 ( )
( , ) ( ) ( )

L
d= ∫u v u x v x x

Ω Ω
. 

 
The associated norm is denoted by 2

2
, ( )

( , )
L

=u u u 10 Ω Ω
. Given a multi-index for the 
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derivative order ( ,..., ) ,α α α= n
n1 ∈ we set: 

 
|

,
...

D
α

α
α α

=
|∂

∂ ∂ n
n

v
v

x x1
1

 with ...α α α= + + n1 . 

 
A distribution on Ω is a linear form T defined on ( )D Ω , which is “continuous” in the 
following sense: for all sequence ( )n n∈ϕ converging to ϕ in ( )D Ω , we 
have: ( ) ( )T T→nϕ ϕ , when →+∞n . We recall that the convergence in ( )D Ω is defined 
in the following way: →nϕ ϕ in ( )D Ω if there exists a compact set ,K K ⊂Ω , containing 
the support of ϕ and all the supports of the function nϕ , and if, for any 

, Dαα n
n∈ ϕ converges uniformly on K to Dαϕ . We denote by ( )D′ Ω the set of 

distributions on Ω and by .,.< >  the duality bracket between the 

spaces ( )D′ Ω and ( )D Ω . If ( )T D′∈ Ω , we can define its derivative of any orderα n∈ ; it 

is the distribution, denoted by D Tα , defined by: for 
all | |( ), , ( ) ,D D T T Dα α α< >= − < >1∈ Ωϕ ϕ ϕ . 

For any integer ≥m 1 , the Sobolev space ( )Hm Ω consists of those functions 2 ( )Lv ∈ Ω for 
which the partial derivatives (in the sense of distributions or generalized functions) belong 
to the space 2( )L Ω , for each multi-index α such that: α ≤m . This space is a Hilbert space 
with the scalar product defined by: 
 

2( ) ( )
( , ) ( , )

H L
D Dα α

α ≤
= ∑m

m

u v u v
Ω Ω

. 

 
The associated norm is 1 2

, ( )
|| || ( , )

H
= mmu u uΩ Ω

. We also use the following semi-norm: 

2

1 2

, ( )
| |

( , )
L

D Dα α

α =

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∑m

m

u u vΩ Ω
. 

 
We denote by 0 ( )Hm Ω the closure of ( )D Ω in the space ( )Hm Ω . When the set Ω is 
bounded, we have the following Poincaré-Friedrichs inequality: there exists a positive 
constant ( )PC Ω , such that: 
 
for all 1

0 , ,( ), ( )PH ≤v v C v0 1∈ Ω ΩΩ Ω .      (2.1) 

 
As an immediate consequence, we get: 
 
Proposition 2.1. Let Ω be bounded. Then the semi-norm ,( )→v v

1 Ω is a norm on 
1
0( )H Ω which is equivalent to the norm ,( )→v v

1 Ω . 
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More generally, we introduce, for any non negative integer m and any real 
number , ≤ ≤∞p p1 , the Sobolev space: 
 

, ( ) { ( ), ( ),W L D Lα=m p p pv v∈ ∈Ω Ω Ω   for all , }α α ≤m , 
which is a Banach space with the following norm: 
 

, , | ( ) | ,D dα

α ≤

⎡ ⎤
⎢ ⎥=
⎢ ⎥⎣ ⎦
∑ ∫

p

p
m p

m

v v x x

1

Ω Ω
      for < +∞p  

or 
 

, , ( ),
max

L
Dα

α ≤
= ∞∞m m

v vΩ Ω
     for = +∞p , 

 
where 
 

( )L =∞v Ω Inf{M ≥ 0 , such that M≤v , a.e. on }Ω . 

 
Finally, we need to define the trace on Γ of functions belonging to Sobolev spaces. In the 
monodimensional case, we can show that a function 1(] , [)Hv a b∈ is equal (a.e.) to a 
continuous function on [ , ]a b (still denoted byv ); more precisely there exists a positive 
constant ( , )C a b such that: 
 

,
[ , ]

sup ( ) ( , )≤
x a b

v x C a b v 1
∈�

Ω . 

 
In that case, there is no difficulty to define ( )v a or ( )v b . For higher dimensions, we 

introduce the space ( )D Ω of restrictions in Ω of functions belonging to ( )nRD . We 
suppose from now on that Ω is bounded with at least a Lipschitz-continuous boundary (we 
refer to [5] for a precise definition of the regularity of the boundary). Then ( )D Ω is dense 

in ( )H1 Ω , which allows us to define, by density arguments, a trace operator.  
 
Theorem 2.2.  There exists a continuous linear mapping 2: ( ) ( )H L→γ Γ1

0 Ω , Such that 

for all ( ), ( )D = Γγv v v0∈ Ω . The kernel of this mapping is the space 1
0( )H Ω and its 

image, denoted by 1 2( )H Γ , is dense in 2( )L Γ . Conversely, any function g in 1 2( )H Γ can 

be extended to a function v  in ( )H1 Ω , but this extension is not unique (if  v  is an 
extension, the other ones are of the form +v w , where w  is an arbitrary function in 

1
0( )H Ω ). The space 1 2( )H Γ is a Hilbert space with the norm defined by: 

 
1 2 ( ) ( )( ), ( )

infH HH =
=Γ γv v g

g v 1
1

0∈ ΩΩ
.       (2.2) 
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More generally, let us suppose that Ω has a boundary of class 1,1C (it means in particular 
that this boundary is locally the graph of a function whose derivatives of order 1 are 
Lipschitz continuous); we denote by ν the unit normal on Γ oriented towards the exterior 
ofΩ . We have: 
 
Theorem 2.3. We suppose that Ω has a boundary of class ,1 1C . Then there exists a 
continuous linear mapping 2 2: ( ) ( )H L→ Γ1 Ωγ , such that for all ( ), ( )D = ∂

Γ∂
vv v1∈ Ω νγ . 

The image of the space 2( )H Ω by the mapping 0γ  is denoted by 3 2( )H Γ ; it is a Hilbert 
space with the norm defined by: 
 

3 2 2
2

0
( ) ( )( ), ( )

infH HH =
=Γ v v g

g v
∈ ΩΩ γ

.       (2.3) 

 
The kernel of the continuous mapping 

2 2 2( , ) : ( ) ( ) ( )H L L= → ×γ γ γ0 1 Ω Γ Γ is the space 2
0 ( )H Ω . 

 
Still using the density of regular functions, we can generalize Green’s formula (1.3) for      

2 ( )Hv ∈ Ω and 1( )Hv ∈ Ω  in the following sense (Ω is bounded with a Lipschitz-
continuous boundary): 
 

( )( ) ( )( ) ( )( ) ( )d d d= − ⋅ +∫ ∫ ∫ΓΔ ∇ ∇ Γuv x x u v x x u v x x1 0Ω Ω
γ γ .   (2.4) 

                                               
Last, we can further weaken the hypothesis on u : the formula remains valid if 

1( )Hu ∈ Ω with 2( )LΔu ∈ Ω [4], but then the integral over Γ has to be replaced by a 

duality bracket, that we simply denote by .,.< >Γ , between the space 1 2 ( )H Γ and its dual 

space 1 2( )H − Γ (in fact, if 1( )Hu ∈ Ω , one only has 1 2( )H − Γu1 ∈γ ). We get the 
following generalized green formula: 
 
Proposition 2.4. Let Ω be a bounded open subset of nR with a Lipschitz-continuous 
boundary. Then, for all 1, ( )Hu v ∈ Ω with 2( )LΔu ∈ Ω , we have:  
 

( )( ) ( )( ) ,d d= − ⋅ + < >∫ ∫ ΓΔ ∇ ∇uv x x u v x x u v1 0Ω Ω
γ γ .    (2.5) 

 
2.2. The Variational Formulation 
 
Let us go back to the example of the introduction. We can now show the equivalence 
between the boundary value problem and the variational one.  
 
Proposition 2.5 Let us suppose that Ω is a bounded open subset of nR with a Lipschitz-
continuous boundary and that f belongs to 2( )L Ω . Let Hu ∈ with ( )H H= 1

0 Ω . If u  is a 
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solution of Eqs.(1.4)-(1.5), then 2( )LΔu ∈ Ω and it satisfies the boundary value problem 
(1.1)-(1.2) (a.e. respectively on Ω and onΓ ). Conversely, if u satisfies (1.1)-(1.2) 
with 2 ( )LΔu ∈ Ω , then u is a solution of Eqs (1.4)-(1.5).  
 
Proof. If u is the solution of  (1.1) with 2( )LΔu ∈ Ω , we proceed as in Section 1.2. We 

multiply Equation (1.1) by 1
0 ( )Hv ∈ Ω , integrate over Ω and use Green’s formula (2.5); 

since =v0 0γ , we get (1.4)-(1.5). Let us show the converse. For this, we only have to 

suppose 1
0( )Hu ∈ Ω . If Eqs (1.4)-(1.5) hold for any function v in 1

0 ( )H Ω , they hold in 
particular for any function in ( )D Ω . We can interpret Equation (1.4) in the distributional 
sense; in fact, we get ,f< − − > =Δu v 0 , for any ( )Dv ∈ Ω , which gives: 

f− =Δu in ( )D′ Ω . Now, since 2( )f L∈ Ω , we first get the following regularity result: 
2 ( )LΔu ∈ Ω and f− =Δu in 2( )L Ω , so that Equation (1.1) is satisfied a.e. onΩ . Finally, 

we have =u0 0γ , because 1( )Hu 0∈ Ω and Equation (1.2) occurs a.e. onΓ .  
 
It now remains to show that the variational problem (1.4)-(1.5), with ( )H H= 1

0 Ω , has a 
unique solution. In this example, the answer is straightforward. Let us recall Riesz’s 
theorem:  
 
Theorem  2.6 (Riesz). Let H be a Hilbert space, with scalar product denoted by (.,.)H . 
Then, for any linear continuous form L defined on H , there exists a unique Hu ∈ , such 
that: for all Hv ∈ , ( ) ( , )HL =v u v . 
 
Now, according to Proposition 2.1, the Sobolev space 1

0( )H Ω is a Hilbert space for the 
reduced norm 1,. Ω ; application of Riesz’s theorem then trivially gives: 

 
Proposition 2.7. The variational problem (1.4)-(1.5), with 2( )f L∈ Ω , has a unique 

solution in 1
0( )H Ω . 

 
The model problem (1.1)-(1.2) has been completely solved. In order to obtain similar 
results for more general situations, we need a generalization of Riesz’s theorem: this is the 
Lax-Milgram theorem. 
  
Before proceeding further, let us give some useful regularity results for the solution of the 
variational problem. We have [5]: 
 
Proposition 2.8.  Let u be the solution of the variational problem (1.4)-(1.5), with 

2( )f L∈ Ω given by Proposition 2.7. If the boundary Γ  is of class 1,1C , then: 2( )Hu ∈ Ω .  
 
Remark 2.9. This regularity result can be generalized. If ( )f H k∈ Ω , with ≥k 0 , then, 
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under suitable assumptions on the regularity of the boundary, we shall have: ( )H ku ∈ Ω . 
Moreover, this result is valid for more general elliptic operators (we shall see examples in 
Section 3 below), as long as the coefficients of these operators are sufficiently smooth. 
 
There are in fact two types of regularity results: 
 
(1) a “local” regularity result, which only depends on the regularity of the coefficients of 
the elliptic operator involved; the result is: 
 
if ( )locf H k∈ Ω ,      then 2( )locH +ku ∈ Ω , 
 
where: 
 

( ) { ( )locH f D′=k ∈Ω Ω , such that for all ( ), ( )}D f H k∈ ∈Ω Ωϕ ϕ . 
 
(2) a “global” regularity result, i.e. up to the boundary. For this, the regularity of the 
boundary is essential, such as the type of boundary conditions. We refer for example to [3] 
for a counter example, when the domain is not smooth enough. 
 
- 
- 
- 
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