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Summary 
 
In this chapter, we examine with the help of a simple example how a famous formula is 
not suitable to the computer. This will be an introduction to computational science, 
which is a new trend of applied mathematics. This new area requires many new 
methods in order to produce actual calculations with the computers. A lot of research 
works are developed all around the world to help engineers to face this great challenge: 
numerical simulation of natural events. 
 
1. An Unusable Formula 
 
I have a great admiration for the power of mathematical language, which encapsulates 
complex theoretical results in a simple symbolic formalism. Among the  many formulas 
learned by students in sciences, let us have a look at the so-called “Cramer’s formulas”, 
which give the expression of the solution of a linear system in terms of the data. Let 
A ×∈ n n  be a square regular (nonsingular) matrix and b∈ n  a vector, the n  
components of ∈ nx , solution of the linear system A b=x  are written as 
 
index k  goes from 1 up to n . In these relations, so-called Cramer’s formulas, A  
stands for the determinant of matrix A , with elements ,i jA . 
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The determinant of a squared matrix A  of order n  is obtained by summation of !n  
products of n  terms each: 
 

1, (1) 2, (2) , ( )
( )

det( ) ( ) ...... .A A A A A
∈

= = ∑ n n
n

σ σ σ
σ

ε σ
S

 

 
So the calculation of the solution of the linear system by these formulas requires the 
evaluation of 1+n  determinants of order n , which leads to a total cost of ( 1) !+n n n  
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operations (additions and multiplications). In the limits of a theoretical study, this does 
not look very expensive (it is just another formula), however this is not true as we can 
see with an actual (though very simple) example: 
 
Question: A computer performs around 1210  operations per second; what is the 
computational time to solve a linear system of order 20 (power breakdowns or strikes 
would not be taken into account!). 
 
Answer: As 1820! 2, 43 10≈ × , the computational time of the solution of a linear system 

of order 20 by this method requires 211,02 10×  operations. A (super) computer 

performing 1210  operations by second will need 21 12(1,02 10 ) (10 365 86400) 32× × × ≈/  
years to make it up! 
 
Furthermore, as 157100! 9,33 10≈ × , one can easily check that the computational time to 
solve a linear system of order 100 by the Cramer’s formulas is far above the age of the 
universe! 
 
But today, engineers have to solve huge linear systems: 610≈n ; so it is obvious that 
these elegant formulas are not usable for this work ! 
 
This very simple example shows that one has to invent new methods better suited to 
calculation on the computer. This is one of the aims of numerical analysis, a (rather) 
new branch of mathematics. The following section is an introduction to some of these 
methods, which shall be developed later. 
 
1.1. The Case of a Triangular Matrix 
 
If the matrix A  is triangular, the solution of the linear system can be obtained in a 
cheaper way. Triangular matrices are squared matrices with a special pattern: 
 

x 0 0 0 0 0 0 0 x x x x x x x x
x x 0 0 0 0 0 0 0 x x x x x x x
x x x 0 0 0 0 0 0 0 x x x x x x
x x x x 0 0 0 0 0 0 0 x x x x x

et
x x x x x 0 0 0 0 0 0 0 x x x x
x x x x x 0 0 0 0 0 0 0 0 x x x
x x x x x x 0 0 0 0 0 0 0 0 x x
x x x x x x x x 0 0 0 0 0 0 0 x

L U

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
Let L ×∈ n n  be a regular lower triangular matrix, the solution of the linear system 
L b=y  is obtained by the following formulas: 
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Likewise let U ×∈ n n  be an upper triangular regular matrix, the solution of the linear 
system U b=x  is obtained by the following formulas: 
 

,,

,....,1
.[ ] i ii i i j j

j i

i
UU

>

=

= −∑
for don

x y x /  

 
These relations are easy to check. So the vector x  is computed component by 
component, beginning with the last one ny  (backsubstitution procedure), by the same 
way y  is computed component by component, beginning with the first element 1x . As 
matrices L  and U  are supposed to be regular, the diagonals of both matrices have non-
zero elements. 
 
Computational cost: 
 
According to these new formulas, the computation of component ky  costs k  
multiplications, k  additions plus one division, that makes altogether 2 1k +  operations. 
So the total cost of the n  components of the vector y  is of order ( 1)+n n  operations, 
much more reasonable than the previous formulas! (We obtain the same cost for the 
upper triangular system U =x y ). 
 
This analysis leads us to a new approach to the calculation of the solution of linear 
systems of the general form (with matrix A  squared and regular, but not triangular) we 
try to use this property by a factorization of the matrix A  into two triangular matrices: 
A LU= . 
 
2. Direct Methods 
 
2.1. Introduction 
 
In the previous section, we have seen how the triangular pattern of a matrix can be used 
to simplify the calculation of the solution of a linear system. But how to manage the 
general case? The classical answer is the factorization of matrix A  into two triangular 
matrices:  A LU= . The associated algorithms are known as direct methods these are 
Gauss, Crout and Cholesky methods, which are developed in this section. The last part 
of this section is devoted to the practical use of such methods in the particular (but 
significant) frame of sparse matrices. 
 
2.2. Factorization Method 
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The easiest way to introduce the factorization method is to suppose that the problem is 
partially solved: the matrix A ×∈ n n  is written as 
 

1,1 1,2

2,1 2,2

[ ] [ ]

[ ] [ ]

A A
A

A A

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
with 1 1

1,1[ ]A ×∈ n n , 2 1
2,1[ ]A ×∈ n n , 1 2

1,2[ ]A ×∈ n n , 2 2
2,2[ ]A ×∈ n n , and 1 2,n n  are 

two non zero integers satisfying 1 2= +n n n . Now we suppose a factorization of the first 

block known, that is, 1,1 1,1 1,1[ ] [ ] [ ]A L U=  with 1 1
1,1 1,1[ ] ,[ ]L U ×∈ n n  triangular regular 

matrices (diagonal elements of 1,1[ ]L  are equal to 1); then we write  
 

2

1,11,1 1,2 1,1 1,2

2,12,1 2,2

[ ] 0[ ] [ ] [ ] [ ]
[ ][ ] [ ] 0

LA A U U
A

L IA A

⎛ ⎞⎛ ⎞ ⎛ ⎞
= = ×⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠n S

. 

 
Identifying both parts of this relation leads to  
 

1,1 1,1 1,1 1,2 1,1 1,2

2,1 2,1 1,1 2,2 2,1 1,2

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] .

A L U A L U

A L U A L U

= =

= = +S
 

 
in which the regular matrices 1,1[ ]L  and 1,1[ ]U  are known, so 
 

1
1,2 1,1 1,2[ ] [ ] [ ]U L A−=  and then 1

2,1 2,1 1,1[ ] [ ] ,L A U −=  
 
that is 
 

1 1 1
2,1 1,2 2,1 1,1 1,1 1,2 2,1 1,1 1,2.[ ] [ ] [ ] [ ] [ ] [ ]L U A U L A A A A− − −= =  

 
Finally 
 

1
2,2 2,1 1,1 1,2.[ ] [ ] [ ]A A A A−= −S  

 
This matrix 2 2×∈ n nS  comes directly from the partition of matrix A ; it is called 
Schur complement associated with this partition. Suppose then that we know how to 
factorize this matrix S  into 2,2 2,2[ ] [ ]L U=S  with 2,2[ ]L , 2 2

2,2[ ]U ×∈ n n  triangular 

regular matrices, ( 2,2[ ]L  with ones on the diagonal) then we are at home, because 
 

2

1,1 1,1 1,1 1,21,1 1,2

2,1 2,1 2,2 2,2

[ ] 0 [ ] 0 [ ] [ ][ ] [ ]
[ ] [ ] [ ] 0 [ ]0

L L U UU U
A

L I L L U

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= × = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠n S

. 
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Let us summarize the factorization method of the matrix A : We suppose the first 
diagonal element 1,1[ ]A  not equal to zero, then we write 1,1 1,1[ ] 1 [ ]A A= ×  and we define 

1,1[ ] 1L =  and 1,1 1,1[ ] [ ]U A= ; that is to say that we consider a partition of matrix A  with 

1 1=n  and 2 1= −n n . From the previous study, we get 
 

1
1,2 1,1 1,2 1,2[ ] [ ] [ ]U L A A−= =  and 1

2,1 2,1 1,1 2,1 1,1[ ] [ ] [ ] [ ]L A U A A−= = /  
 

2,2 2,1 1,2 1,1[ ] [ ] [ ] [ ]A A A A= − × /S  
 
This later relation may also be written as 
 

,1 1,
, 1, 1 ,

1,1

[ ] [ ]
2 , [ ] .

[ ]
i j

i j i j i j
A A

i j A
A− −

×
∀ ≤ ≤ = −n S  

 
So only by using the elements of matrix A , we can start the factorization process: 
 
-the first row of matrix A  defines the block 1,2[ ]U  by 1,2 1,2[ ] [ ]U A=  

- the first column of matrix A  defines the block 2,1[ ]L  by 2,1 2,1 1,1[ ] [ ] [ ]L A A= /  

- the Schur complement is defined by 2,2 2,1 1,2 1,1[ ] [ ] [ ] [ ] .A A A A= − × /S  
 
Now it is obvious that the continuation of the process is only related to the factorization 
of the matrix S , and this is possible if 1,1 0≠S ! When this property is satisfied, the 
previous method is used to factorize the matrix S  of order 1−n  and so on... By 
denoting ( )kA  and ( 1)k+S  the successive matrices generated by the method (we define 

(0)A A= ), the different steps are summarized in the following algorithm 
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=

=
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n
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n
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do

( ) ( )
,,

k k
i ji k j k A− − =

end
end

end

S

  
 
If a diagonal element  ( 1)

,
k

k kA −  appears to be equal to zero during the calculation, we look 

into column k  of matrix ( 1)kA −  for a non zero element; let  ( 1)
,
k

i kA −  be this element for 
some row index i k> , we exchange then rows i  and k . This operation is equivalent to 
multiply the generic matrix ( )kS  by a permutation matrix ( )kP : 
 

( ) ( ) ( ) ( )
,, , ,

( ) ( )

( ) ( ) ( ) ( )
,, , ,

0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1

k k k k
i ik k k i i k

k k

k k k k
i ii k k k k i

P

⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= =⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠

SS S S

S

SS S S

 
In the frame of the matrix of order n , this is equivalent to multiply matrix ( 1)kA −  by a 
permutation matrix ( , )P i k ×∈ n n  
 

( )

0
( , )

0
k

k

I
P i k

P
−⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

n  

 
and finally 

1,1 1,21,1( 1)
( )

2,1

[ ] [ ][ ] 00
( ) .

0 [ ] 0
k

k

U ULI
P i k A

P L I
− ⎛ ⎞⎛ ⎞⎛ ⎞

− = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠S
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This multiplication does not modify rows of index less than k  whose elements are 
known, but it changes the values of rows i  and k  in matrices L  and ( )kA . 
 
Suppose now, that we cannot find any non zero element ( 1)

,
k

i kA −  in column k . What does 
it mean? It means that the current factorization has the following pattern 
 

2

1,1 1,1 1,21,1 1,2
( )2,12,1 2,2

[ ] 0 [ ] [ ][ ] [ ]

[ ][ ] [ ] 0 k

L U UA A
A

L IA A

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠n S

. 

 
Then the first column of matrix ( )kS  is null, and 
 

( )
1,1det det[ ] det 0kA U= =S . 

 
This relation contradicts the assumption that matrix A  is regular ! So we are assured to 
find at least one non zero element in column k . 
 
When the complete process needs more than one permutation to be successfully 
concluded, the final relation is written as 
 

-1 -1 1 1( , ) ( , )... ( , )P A P i k P i k P i k A L U= =m m m m , 
 
where the matrix P  is again a permutation matrix, taking into account the history of all 
permutations performed during the factorization. So we have established the following 
result: 
 
Let A ×∈ n n  be a regular matrix, there exists a permutation matrix P ×∈ n n , a lower 
triangular matrix L ×∈ n n  with unity values on the diagonal, and an upper triangular 
matrix U ×∈ n n  such that P A L U= . 
 
- 
- 
- 
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