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Summary 
 
In this chapter, we provide an introduction to the numerical schemes devoted to the 
simulation of compressible flow problems. We first review a few elements of modeling 
of compressible flow problems and then provide a brief description of the solutions to 
one dimensional problems. We identify a class of partial differential equations (PDEs) 
which share common features with those describing flow problems. In particular, we 
show that it is not possible to expect globally smooth solutions. Then we describe a 
class of numerical schemes that are able to approximate the solutions, first for one-
dimensional problems and for the multidimensional problems. Finally, numerical 
examples are provided. 
 
1. Introduction 
 
In many industrial applications, fluid flow cannot be approximated by the 
incompressible Navier Stokes equations: either the speed is too high (e.g. flows around 
aircraft or reentry vehicles), or the density is not uniform (e.g. in car engines), or 
acoustic effects are not negligible (e.g. when an aircraft is landing). In these cases and 
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many others, one has to rely on the Navier Stokes equations for compressible flow., For 
simplicity, in this chapter we focus  on flows where viscous effects can be neglected. 
 
The state of flow is represented by a vector of conserved variables ( , , )TW E= ρ ρu  

where ρ  is the density, u  is the flow velocity, and 21
2E = +ρε ρu  is the total energy. 

Here, ε  represents the specific internal energy. in the light of the basic principles of 
continuum mechanics, W  satisfies the following: 
 

div ( ) 0q F q
t
+ =

∂
∂

      for  ∈x Ω       and  0t >  

 
0( ,0) ( )q q=x x                for  ∈x Ω   (1) 

 
In (1), Ω  is an open subset of N , N = 1,2,3, the flux F  is given by 
 

( )
( ) ( Id)

E p
F q p

+
= ⊗ +

ρ
ρ

u

u
u u   (2) 

The system is closed by a relation between the pressure p  and the state variables. In 
this paper, we consider the simplest example of an ideal gas for which  
 

21( 1) .
2

p E⎛ ⎞= − −⎜ ⎟
⎝ ⎠

γ ρu   (3) 

 
In (3), γ  is the ratio of specific heats and is γ =1.4 in all applications we present in the 
paper  
 
The first relation given by (1), namely, 
 

div( ) 0
t
+ =

∂ρ
ρ

∂
u   (4) 

 
signifies conservation of mass. The second relation, 
 

( ) div( ) div 0,p
t

+ ⊗ + =
∂ ρ

ρ
∂
u

u u  

 
is for conservation of momentum and application of the fundamental principles of 
mechanics. The nest relation is for conservation of total energy, 
 

div(( ) ) 0,E E p
t
+ + =

∂
∂

u  

 
and represents the first law of thermodynamics. 
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There is yet another relation, namely the second law of thermodynamics. It states that 
the entropy of a fluid particle increases with time, that is 
 

0.s s
t
+ ∇ ≥

∂
∂
u .   (5) 

 
By multiplying (5) by ρ  and (4) by s , and then summing up, we get 
 

div( ) 0.s s
t
+ ≥

∂ρ
ρ

∂
u   (6) 

 
In (5) and (6), s  represents specific entropy. In the case of an ideal gas, we have  
 

0 log( ).s s c p= + −γ
υ ρ   (7) 

 
One of its important properties is that the function 21

2( )s s E= −ρ, ρu  is a concave 

function of 21
2( )E −ρ, ρu . The problem of relation (5) is that it is written in non-

conservative form. In particular, as we see later, it is natural to admit solution for which 
neither u  nor s  are continuous, so that the product s∇u .  may be undefined in general. 
Interest in relation (7) is two fold. First, it is written in conservative form so that, as we 
see later, the problem of non-smooth solution can be solved. Second, the mathematical 
entropy, ( , )S s E= −ρ ρ u,  is a convex function of its arguments. 
 
2. A Brief Description of the Solutions 
 
It is very natural to consider non continuous solutions. Take for example the situation of 
a shock tube. This is an experimental device which is used to generate shock waves. It is 
a tube filled with gas. It is initially made of two sections separated by a diaphragm, see 
Figure 1. The left and right chambers are filled with gas with different velocity and 
pressure.  In this experimental setup, the initial velocity is set to zero; the 1D-Riemann 
problem, 
 

 
Figure 1: the shock tube problem 

 

0 , 0

if 0
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if 0
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plays a very important role in the numerical simulation of compressible flows. In the 
Riemann problem, the initial condition is discontinuous. 
 
An analysis of the solution of the shock tube problem shows that it is equivalent to the 
superposition of two piston problems, see Figure 2.  
 

 
Figure 2: The piston problems 

 
In one case, the piston is moving to the left, in the other case, it is moving to the right. If 
one considers an experiment with a tube filled with gas where a piston, at time t  = 0 
moves with a velocity V  to the left, then the density and the pressure in the vicinity of 
the piston will decrease, and a wave is created from the piston. If we sit far enough from 
the piston, we do not feel the effect of changing the pressure: in general, this wave 
connects the area where the solution is still uniform and the fan. The connection is 
continuous but not continuously differentiable. 
 
If one now pushes the piston to the right, one can show that the state flow parameters 
are uniform in the neighborhood of the piston, also uniform far enough, and the two 
uniform states are connected by a shock wave, that is a moving discontinuity where all 
the flow parameters are discontinuous. 
 
If the piston is moved smoothly, depending on the conditions, the flow may be 
continuous at any time or discontinuities can be generated. 
 
In the case where the solution is not smooth, what is the meaning of the system (1) ? 
The answer has been provided by P.Lax. 
 
2.1 On the Notion of Solutions 
 
The idea is to integrate (1) against compactly supported smooth test functions 

1
cC∈ϕ ( ×Ω   2[0, ]) .NT + Assuming that q  is smooth, if we integrate (1) multiplied by 

ϕ , we get 
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( ) ( ,0) . ( ,0) 0q F q d dt q d
t×

⎛ ⎞⋅ + ⋅∇ − =⎜ ⎟
⎝ ⎠∫ ∫

∂ϕ
ϕ ϕ

∂
x x x x

Ω [0,Τ] Ω
         (9) 

 
The advantage of (9) w.r.t. (1) is that q  does not appear anymore with derivatives: they 
have been transferred to the terms containing ϕ . Thanks to this, we can define the weak 

solutions of (1) as the functions in 1( [0, ]) ( [0, ])L T L T× ×∞ Ω ∩ Ω  such that for any 
1 2( [0, ])N
cC T +∈ ×ϕ Ω , (9) holds. 

Similarly, the inequality (7) has to be understood as the solutions q  such that for any 
1( [0, ]), 0cC T∈ × ≥ϕ ϕΩ , one has 

 

( ,0) ( ,0) 0.s s d dt s d
t×

⎛ ⎞+ ∇ − ≥⎜ ⎟
⎝ ⎠∫ ∫

∂ϕ
ρ ρ ϕ ϕ

∂
u . x x x x

Ω [0,Τ] Ω
               (10) 

 
This relation shows the advantage of (5) with respect to (6). Solutions that satisfies the 
inequalities (6) for all the convex entropy U  associated to an entropy flux G , that is 
 

.q WG U F∇ =∇ ∇  
 
and 
 

. ( ,0) ( ,0) 0.U G d dt U d
t×

⎛ ⎞+ ∇ − ≥⎜ ⎟
⎝ ⎠∫ ∫

∂ϕ
ϕ ϕ

∂
x x x x

Ω [0,Τ] Ω
 

 
are called entropy solutions. For a characterization of the couple entropy-flux for the 
Euler equations, ( , )U G , see [15]. 
 
The solutions we are interested in are piecewise smooth. The discontinuities of the 
solutions lie on a piecewise smooth curve ∑ , see Figure 3. By using test functions 
whose supports are localized in the neighborhood of ∑ , we get the Rankine-Hugoniot 
relations 
 
[ ( )] [ ]F q q= σn                 (11) 
 
 where [ ] (.) (.)f + −= −  is the jump of f  at ,M F∑∈ n  is the normal flux and σ  is the 
speed of the discontinuity. The inequality (7) becomes 
 
[ ] [ ]s≥ρ σu .ns                     (12) 
 
In (12), the definition of [ ]f  is important because of the inequality. Equation (12) 
indicates that the specific entropy of a fluid particle increases across a discontinuity. 
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Figure 3: Discontinuous solutions on a piecewise smooth curve 

 
Tadmor [32] showed that the solution (if it is bounded) satisfies the following minimum 
principle 
 

( , ) min ( ,0)
t

s t s
− ≤

≥
y x u

x y
∞

               (13) 

 
where x  is the Euclidean norm of x  and u ∞  is the L∞  norm of the velocity field 
 
2.2   Hyperbolicity: Characteristic Form of the Equations 
 
A straightforward calculation shows that if ( )x yn n ,n  is any vector, then the matrix 

A B+x yn n , where A  and B  are the Jacobian matrices of the flux, is diagonalizable in 
. The system (1) is said to be hyperbolic. More precisely, set c  the speed of sound 

 

: .
s

p pc = =
∂

γ
∂ρ ρ

 

 
The eigenvalues of A B+x yn n are 0 ±= = ±u.n, u .n cλ λ . The eigenvalue 0λ  is double 

(triple in 3D). If ( , )t = − xny n , the eigenvectors are respectively 
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we skip the left eigenvectors 0 0, , ±

n t , they can be found in [13]. 
 
It is possible to find special solutions to (1) of the form ( ),q q= σ σ∈  such that  
 

( ( ))dq r q
d

= σ
σ

 

 
where r  is any of the eigenvectors of A B+x yn n  and ( . )x t=σ σ ω, , ω  being a fixed 
direction. We are looking for planar waves. Using (1), we see that ( , ) ( , )t tχ σ χ  
satisfies an equation of the type 
 

( ( , )) 0q t
t
+ =

∂σ ∂σ
σ ω,

∂ ∂χ
λ . 

 
These three equations are non linear scalar equations. These particular solutions are 
characterized as follows 

1. waves associated with c= ±uλ , these are fans where p −γρ  and 2
1

c
−

∓
γ

u  remain 

constant 
2. waves associated with ,= u uλ  and p  remain constant. 
 

The functions 2, ,
1

p c− ∓γρ
γ−

u u  and p  are the Riemann invariants. 

 
When analyzing the structure of the Rankine Hugoniot relations, it can be easily seen 
that the piecewise constant solutions must be of the form 
 
1 either u  and p  remain constant, ρ  and s  can be arbitrary: these are contact 
discontinuities; 
 
2 or all the variables are discontinuous, they are shock waves. Let us denote with a 
superscript + the post-shock conditions and with a superscript – the pre-shock 

conditions and denoting by σ  is the shock speed and = −υ σu , and M
c

−

−=
υ  the 

relative match number of the shock, we have 
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2
2 1 1

1 1M

−

+
−

= +
+ +

ρ γ
γ γρ

 

 

2
2 1 1

1 1M

+

−
−

= +
+

υ γ
γ γ−υ

 

 
22 1

1 1
p M
p

+

−
−

= −
+ +
γ γ

γ γ
 

 
From this we see that the density and the pressure increase through a shock. The 
opposite is true for the velocity. 
 
We observe that u  and p  are invariant parameters for the wave associated with = uλ . 
This remark is useful in the effective solution of the Riemann problem. 
 
These particular solutions are building blocks of the solution of the Riemann problem 8. 
They can be observed in Figures 7, 8, and 9. 
 
More on the structure of the solution can be found in [13, 28]. 
 
- 
- 
- 
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