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Summary 
 
Nonequilibrium statistical physics studies the fast-slow decomposition for large 
systems. It is a collection of ideas and methods for the extraction of slow invariant 
manifolds. Most of these methods were developed initially for the Boltzmann equation. 
In this article, the main methods of nonlinear kinetics are described and illustrated on 
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this basic equation. General properties of the Boltzmann equation are presented. The 
Enskog, Vlasov, and Smoluchovski equations are outlined. 
 
1. The Boltzmann Equation 
 
1.1. The Equation  
 
The Boltzmann equation is the first and most famous nonlinear kinetic equation 
introduced by the great Austrian physicist Ludwig Boltzmann in 1872. This equation 
describes the dynamics of a moderately rarefied gas, taking into account for the two 
processes, the free flight of the particles, and their collisions. In its original version, the 
Boltzmann equation has been formulated for particles represented by hard spheres. The 
physical condition of rarefaction means that only pair collisions are taken into account, 
a mathematical specification of which is given by the Grad-Boltzmann limit: if N is 
the number of particles, and σ is the diameter of the hard sphere, then the Boltzmann 
equation is expected to hold when N tends to infinity, σ  tends to zero, Nσ 3 (the volume 
occupied by the particles) tends to zero, while Nσ 2 (the total collision cross section) 
remains constant. The microscopic state of the gas at time t is described by the one-
body distribution function ( ), , ,P tx v  where vector x is the position of the center of the 
particle, and vector v is the velocity of the particle. The distribution function P is the 
probability density of finding the particle at time t within the infinitesimal phase space 
volume d dx v  centered at the phase point ( , )x v . The collision mechanism of two hard 
spheres is presented by a relation between the velocities of the particles before [v and 
w] and after [ 'v and 'w ] their impact: 
 

' ( , },= − −v v n n v w  
 

' ( , },= + −w w n n v w  
 
where n is the unit vector along '−v v . Transformation of the velocities conserves the 
total momentum of the pair of colliding particles ( )' ' ,+ = +v w v w  and the total kinetic 

energy ( )2 2 2 2' ' .+ = +v w v w  The Boltzmann equation reads:  

 

( ) ( )
3

2

,

( , ', ) ( , ', ) ( , , ) ( , , ) , ,
R B

P P
t

N P t P t P t P t d dσ
−

∂ ∂⎛ ⎞+ ⎜ ⎟∂ ∂⎝ ⎠

= − −∫ ∫

v
x

x v x w x v x w w v n w n
 (1) 

 
where integration in w is carried over the space 3R , while integration in n goes over a 
hemisphere ( ){ }, 0 .B− = − <n w v n  This hemisphere corresponds to the particles 
entering the collision. The nonlinear integral operator on the right of Eq. (1) is nonlocal 
in the velocity variable and local in space. The Boltzmann equation for arbitrary hard-
core interaction is a generalization of the Boltzmann equation for hard spheres under the 
proviso that the true infinite-range interaction potential between the particles is cut-off 
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at some distance. This generalization amounts to a replacement, 
 

( ) ( )2 , ,d B d dσ θ θ ε− → −w v n n w v ,  (2) 
 
where function B is determined by the interaction potential, and vector n is identified 
with two angles, θ and ε. In particular, for potentials proportional to the nth inverse 
power of the distance, function B reads,  
 

( ) ( 5) /( 1), ( ) .n nB θ β θ − −− = −v w v w   (3) 
 
In the special case n = 5, function B is independent of the magnitude of the relative 
velocity (Maxwell molecules). Maxwell molecules occupy a distinct place in the theory 
of the Boltzmann equation, they provide exact results. Three most important findings 
for the Maxwell molecules are mentioned in the following:  
1. The exact spectrum of the linearized Boltzmann collision integral, found by Truesdell 

and Muncaster. 
2. Exact transport coefficients found by Maxwell even before the Boltzmann equation 

was formulated.  
3. Exact solutions to the space-free model version of the nonlinear Boltzmann equation. 

Pivotal results in this domain belong to Galkin who has found the general solution 
to the system of moment equations in the form of a series expansion, to Bobylev, 
Krook and Wu who have found an exact solution of a particular elegant closed 
form, and to Bobylev who has demonstrated the complete integrability of this 
dynamic system.  

 
It is customary to write the Boltzmann equation using another normalization of the 
distribution function, ( ), , ,f t d dx v x v  taken in such a way that function f is compliant 
with the definition of the hydrodynamic fields: the mass density ρ, the momentum 
density ρu, and the energy density ε: 
 

( ) ( ), , , ,f t m d tρ=∫ x v v x  

( ) ( ), , , ,f t m d tρ=∫ x v v v u x  (4) 

( ) ( )
2

, , , .
2

vf t m d tε=∫ x v v x  

 
Here m is the particle’s mass. 
 
The Boltzmann equation for the distribution function f is, 
 

( ), , ,f f Q f f
t

∂ ∂⎛ ⎞+ =⎜ ⎟∂ ∂⎝ ⎠
v

x
 (5) 

 
where the nonlinear integral operator on the right is the Boltzmann collision integral, 
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( ) ( )
3

( ') ( ') ( ) ( ) , .
R B

Q f f f f B d d dθ θ ε
−

= −∫ ∫ v w v w v w  (6) 

 
Finally, we mention the following form of the Boltzmann collision integral (sometimes 
referred to as the scattering or the quasi-chemical representation) 
 

( ) [ ], ', ' ( ') ( ') ( ) ( ) ' ',Q W f f f f d d d= −∫ v w v w v w v w v w v  (7) 
 
where W is a generalized function which is called the probability density of the 
elementary event 
 

( ) ( ) ( )2 2 2 2, ', ' ' ' ' ' .W w v w v wδ δ= + − − + − −v w v w v w v w  (8) 

1.2. The Basic Properties of the Boltzmann Equation 
 
Generalized function W has the following symmetries: 
 

( ) ( ) ( ) ( )', ' , ', ' , ', ' , , ', ' .W W W W≡ ≡ ≡v w v w w v v w v w w v v w v w  (9) 
 
The first two identities reflect the symmetry of the collision process with respect to 
labeling the particles whereas the last identity is the celebrated detailed balance 
condition which is underpinned by the time-reversal symmetry of the microscopic 
(Newton’s) equations of motion. The Boltzmann equation has the following basic 
properties. 
 
1. Additive invariants of collision operator: 
 

{ }2( , ) 1, , 0Q f f v d =∫ v v   (10) 

 
for any function ,f  assuming integrals exist. Equation (10) reflects the fact that the 
number of particles, the three components of particle’s momentum, and the particle’s 
energy are conserved in the collision. Conservation laws (10) imply that the local 
hydrodynamic fields (4) can change in time only due to redistribution in space. 
 

2. Zero point of the integral (Q = 0) satisfies the equation (which is also called the 
detailed balance): for almost all velocities, 

 
( ', , ) ( ', , ) ( , , ) ( , , ).f t f t f t f t=v x w x v x w x  

 
3. Boltzmann’s local entropy production inequality:  
 

B( , ) ( , ) ln 0t k Q f f f dσ = − ≥∫x v   (11) 
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for any function ,f  assuming integrals exist. Boltzmann’s constant 
23 1

B( 1.38065 10 JK )k − −≈ ⋅  in this expression is useful for a recalculation of the 
energy units into the absolute temperature units. Moreover, equality sign is applicable 
if ln f  is a linear combination of the additive invariants of collision. Distribution 
functions f whose logarithm is a linear combination of additive collision invariants, 
with coefficients dependent on x, are called local Maxwell distribution functions 

LMf , 
 

( )23/ 2
1 B

LM
B

2
exp .

2
mk T

f m
m k T

π
ρ

−
−

⎧ ⎫−⎛ ⎞ ⎪ ⎪= −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎪ ⎪⎩ ⎭

v u
 (12) 

 
Local Maxwellians are parameterized by values of five scalar functions, ρ, u and T. 
This parameterization is consistent with the definitions of the hydrodynamic fields (4) 

{ } { }2
LM , , 2 , ,f m m mv ρ ρ ε=∫ v u  provided the relation between the energy and the 

kinetic temperature T holds, B3 2 .mk Tε ρ=  
 

4. Boltzmann’s H theorem: the function 
 

[ ] B lnS f k f f d= − ∫ v   (13) 
 
is called the entropy density. The local H theorem for distribution functions 
independent of space states that the rate of the entropy density increase is equal to the 
nonnegative entropy production,  
 

0dS
dt

σ= ≥ .   (14) 

 
Thus, if space dependence is not of concern, the Boltzmann equation describes 
relaxation to the unique global Maxwellian (whose parameters are fixed by initial 
conditions), and the entropy density grows monotonically along the solutions. 
Mathematical specifications of this property have been initialized by Carleman, and 
many estimations of the entropy growth were obtained over the 1970s-1990s. In the 
case of space-dependent distribution functions, the local entropy density obeys the 
entropy balance equation: 
 

( , ) , ( , ) ( , ) 0S t t t
t

σ∂ ∂⎛ ⎞+ = ≥⎜ ⎟∂ ∂⎝ ⎠S
x J x x

x
 (15) 

where SJ  is the entropy flux, ( ) ( ) ( )B, ln , , .t k f t f t d= − ∫SJ x x v x v  For suitable 
boundary conditions, such as, specularly reflecting or at the infinity, the entropy flux 
gives no contribution to the equation for the total entropy, ( )tot ,S S t d= ∫ x x  and its 

rate of changes is then equal to the total entropy production ( )tot , t dσ σ= ∫ x x  (the 
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global H theorem). For more general boundary conditions which maintain the 
entropy influx the global H theorem needs to be modified. A detailed discussion of 
this question is given by Cercignani.  

 
The local Maxwellian is also specified as the maximizer of the Boltzmann entropy 
function (13), subject to fixed hydrodynamic constraints (4). For this reason, the local 
Maxwellian is also termed the local equilibrium distribution function. 
 
1.3. Linearized Collision Integral 
 
Linearization of the Boltzmann integral around the local equilibrium results in the linear 
integral operator, 
 

( )
( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )LM LM LM LM

, ', '

' '
' ' .

' '

LM

Lh

W f f

h h h h
d d d

f f f f

=

⎡ ⎤
+ − −⎢ ⎥

⎢ ⎥⎣ ⎦

∫
v

v w v w v w

v w v w
w v w

v w v w

 

 
Linearized collision integral is symmetric with respect to scalar product defined by the 
second derivative of the entropy functional, 
 

( ) ( ) ( ) ( ) ( ) ( )1 1
LM LM ,f g Lh d f h Lg d− −=∫ ∫v v v v v v v v  

 
it is nonpositively definite 
 

( ) ( ) ( )1
LM 0,f h Lh d− ≤∫ v v v v  

 
where equality sign takes place if the function 1

LMhf −  is a linear combination of collision 
invariants, which characterize the null-space of the operator L. Spectrum of the 
linearized collision integral is well studied in the case of small angle cut-off. 
 
2. Phenomenology and Quasi-chemical Representation of the Boltzmann Equation 
 
Boltzmann’s original derivation of his collision integral was based on a 
phenomenological “bookkeeping” of the gain and of the loss of probability density in 
the collision process. This derivation postulates that the rate of gain G equals  
 

( ) ( ) ( )G W f f d d d+ ′ ′ ′ ′ ′ ′= ∫ v, w v , w v w v w w  
 
while the rate of loss is 
 

( ) ( ) ( ), ', ' ' ' .L W f f d d d−= ∫ v w v w v w v w w  
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The form of the gain and of the loss, containing products of one-body distribution 
functions in place of the two-body distribution, constitutes the famous Stosszahlansatz 
(the collision frequency formula). The Boltzmann collision integral follows now as (G –
 L), subject to the detailed balance for the rates of individual collisions, 

( ) ( ), ', ' ', ' , .W W+ −=v w v w v w v w  
 
This representation for interactions different from hard spheres requires also the cut-off 
of functions β  in (3) at small angles. The gain-loss form of the collision integral makes 
it evident that the detailed balance for the rates of individual collisions is sufficient to 
prove the local H theorem. A weaker condition which is also sufficient to establish the 
H theorem was first derived by Stueckelberg (so-called semi-detailed balance), and 
later generalized to inequalities of concordance: 

( ) ( )( )' ' , ', ' , ', ' 0,d d W W+ −− ≥∫ ∫v w v w v w v w v w  

 

( ) ( )( ), ', ' , ', ' 0.d d W W+ −− ≤∫ ∫v w v w v w v w v w  

 
The semi-detailed balance follows from these expressions if the inequality signs are 
replaced by equalities. 
 
The pattern of Boltzmann’s phenomenological approach is often used in order to 
construct nonlinear kinetic models. In particular, nonlinear equations of chemical 
kinetics are based on this idea: if n chemical species iA  participate in a complex 
chemical reaction, 
 

s s ,i i i i
i i

A Aα β↔∑ ∑  

where siα  and siβ  are nonnegative integers (stoichiometric coefficients) then equations 
of chemical kinetics for the concentrations of species jc  are written 
 

1 1 1
( ) exp exp

n n n
i

si si s sj s sj
j js j j

dc G G
dt c c

β α ϕ α ϕ β+ −

= = =

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎢ ⎥⎜ ⎟ ⎜ ⎟= − −
⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑  

 
Functions sϕ

+  and sϕ
−  are interpreted as constants of the direct and of the inverse 

reactions, while the function G is an analog of the Boltzmann’s H-function.  
 
Modern derivation of the Boltzmann equation, initialized by the seminal work of 
N.N. Bogoliubov, seeks a replacement condition, and which would be more closely 
related to many-particle dynamics. Such conditions are applied to the N-particle 
Liouville equation should factorize in the remote past, as well as in the remote infinity 
(the hypothesis of weakening of correlations). Different conditions have been 
formulated by D.N. Zubarev, J. Lewis and others. The advantage of these formulations 
is the possibility to systematically find corrections not included in the collision 
frequency formula. 
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