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Summary 
 
Mathematical models are discussed for the two central problems, which are of great 
importance for the understanding of the solar wind interaction with the Earth’s 
magnetosphere: solar wind flow around magnetosphere and magnetic field reconnection. 
There are two approaches, which complement each other. The first is global MHD 
models, which can predict large-scale features. The second type is a boundary layer 
model or magnetic flux tube model, which are designed to describe physical effects in 
relatively small-scale regions, such as the magnetic barrier or magnetic reconnection. 
 
Recent attempts to combine the MHD model with kinetic elements have very good 
perspectives. Successful examples are plasma instability criteria used as closure 
relations for anisotropic MHD model. Another important example is that of magnetic 
reconnection problem. The latter can not be solved completely within the MHD model 
because the behavior of resistivity can be obtained only from plasma kinetic theory. 
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The interplanetary magnetic field (IMF) is a key parameter, which controls the solar 
wind interaction with the Earth’s ionosphere. A very important structure directly related 
with IMF is the magnetic barrier, which indicates a way of energy transport into the 
magnetosphere. The IMF is the magnetic barrier, which indicates a way of energy 
transport into the magnetosphere. The IMF is relatively weak in the solar wind but it is 
compressed substantially inside the magnetic barrier, where the magnetic field 
eventually starts to influence the flow.  
 
The magnetospheric boundary is a thin current layer, which might be unstable at some 
points where the effective conductivity of plasma might decrease considerably. The 
latter will initiate the magnetic reconnection process, which converts the magnetic 
energy accumulated in the magnetic barrier into energy of accelerated particles and 
MHD waves propagating towards the ionosphere of the Earth.  
 
1. Introduction 
 
The structure of the space environment near the Earth is determined by the interaction 
of the solar wind with the geomagnetic field. This interaction results in the formation of 
the magnetosphere separating the magnetic field of the Earth from that of the 
interplanetary medium. The general pattern of the magnetosphere (M) is shown in 
Figure 1. The magnetosphere is the blunt obstacle around which the solar wind flows. 
There exists a detached bow shock (S) separating the supersonic solar wind from the 
magnetosheath region in front of the magnetosphere. 
 

 
 

Figure 1: Structure of the Magnetosphere. 
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Physical conditions of the near-Earth space environment (plasma parameters, 
electromagnetic fields) are responsible for space weather and as such are very important 
for space and terrestrial systems. During high solar activity, there exist large 
disturbances in space propagating from the Sun towards the Earth. In particular, 
interplanetary magnetic clouds and coronal mass ejections released from the Sun 
produce strong disturbances in the Earth’s magnetosphere. Magnetic storms are 
associated with the Earth passage of magnetic clouds. Large magnetic storms are 
prevalent near the maximum of solar activity. Within the main storm, the activity peaks 
in episodic events called substorms. In a substorm energetic particles are injected at low 
and high latitudes, energizing the ring current and producing auroras.  
 
Large magnetic storms might cause disruptions of communication and navigation 
systems, power surges in ground transmission lines, failures of communication from 
geosynchronous satellites and other problems. During the magnetic storms, strong 
variations of magnetic field induce currents that might overload power grids, damage 
transformers, and increase corrosion in long pipelines. Ionospheric heating, caused by 
the energetic particles precipitating from the magnetosphere, changes the scale height of 
the neutral atmosphere. This increases the drag on satellites at low orbits. Also, there is 
a very real hazard to astronauts and pilots flying regularly along routes over the poles 
because of the dose of radiation they might get. In the medical aspect, there exist 
statistical studies indicating that people with chronic illnesses are sensitive to the 
magnetic field activity. 
 
Magnetic storms and magnetospheric activity are controlled by the solar activity that 
has an 11-year cycle. These cycle variation effects are well pronounced in the climate of 
the Earth.  
 
Mathematical models based on observations are important tools for studying and 
forecasting the dynamics of near-Earth environment. In general, the problem of solar 
wind interaction with Earth is very complicated and consists of a number of 
subproblems: the shape of the magnetosphere, solar wind flow around the 
magnetosphere, the dissipative processes at the magnetospheric boundary, transfer 
processes of momentum and energy through the magnetospheric boundary, plasma 
convection inside the magnetosphere, penetration of electric fields and magnetic field-
aligned currents into the ionosphere, and acceleration of particles precipitation in the 
ionosphere. 
 
Mathematical models developed for the magnetosphere and the near-space medium can 
be classified as follows: (1) global magnetohydrodynamics (MHD) models, (2) 
boundary layer MHD models, (3) hybrid simulation models, and (4) kinetic models of 
collisionless plasma. 
 
Global MHD models are successfully used for prediction of large scale features. In 
addition to the global models, there exist MHD models suitable for thin boundary layers 
that significantly affect the solar wind – magnetosphere interaction. The first example is 
the magnetic barrier or plasma depletion layer (PDL) near the magnetospheric boundary. 
The second is the so-called reconnection layer, which can exist at the magnetospheric 
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boundary and in the neutral sheet of the magnetotail (see Figure 1). More detailed 
descriptions of plasma processes are provided by the hybrid simulation and kinetic 
models. Good perspectives are expected with the recent attempts to combine MHD 
models with kinetic models. In MHD models, empirical relations are also used in 
combination with the MHD equations. 
 
- 
- 
- 
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