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Summary 
 
Inverse problems focus on the problem of determining parameters and data inherent in 
the mathematical model of a physical or biological phenomenon from measurements of 
the observable data. Such problems are almost invariably ill-posed in the sense that in 
general existence, uniqueness or continuous dependence on the data is no longer true. In 
this chapter we have chosen three “canonical” examples of inverse problems, have 
described their physical origin and then present mathematical methods which in each 
case address the basic issues of existence, uniqueness and stability for what are 
fundamentally ill-posed problems. These examples are the backwards heat equation, 
computerized tomography and the inverse scattering problem for acoustic waves.  To 
aid the reader in our discussion we have also presented a brief introduction to the theory 
of Hilbert spaces where we have only supposed a pre-requisite of elementary linear 
algebra and calculus. 
 
1. Introduction 
 
Although not recognized as a mathematical discipline until recently, inverse problems 
are as old as science itself. In particular a working definition of science is the problem 
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of constructing a model of some physical or biological phenomena that, although 
inexact, is accurate enough to be able to use observations or measurements to obtain 
information about the phenomena under investigation. Such models are typically 
mathematical in nature and hence the challenge is to “invert" the model to recover 
useful estimates of the object under investigation. Since the model itself is inexact, such 
an inversion process typically leads to problems of existence and stability. 
 
Strangely enough, given the above description of the scientific method, the 
mathematical theory of inverse problems was essentially ignored until the middle of the 
twentieth century. Instead, scientists focused on direct problems, i.e. the construction of 
the model itself rather than the inversion process. In particular, direct problems are 
based on developing a mathematical model that maps causes into effects and are 
typically well-posed: each cause has a unique effect and causes which are close to one 
another have effects which are close to each other. The scientific phenomena were then 
investigated by adjusting the input to the direct problem such that the output fit the 
measured data. By the beginning of the twentieth century, the idea of direct problems 
dominated mathematical physics. Indeed, the French mathematician Hadamard held the 
opinion that an important physical problem must be well-posed, i.e. the problem must 
always have a unique solution that depends continuously on the data. 
 
The attitude typified by that of Hadamard persisted well into the middle of the twentieth 
century. However the advent of quantum mechanics and numerous problems in areas of 
classical physics such as heat conduction and geophysics soon slowly convinced 
mathematicians and scientists that well-posed direct problems were not the only ones of 
scientific interest and, pioneered by mathematicians in the Soviet Union led by 
Tikhonov, the mathematical theory of inverse problems began to be developed. In 
particular, this theory focused on the problem of determining the parameters and data in 
the mathematical model of the direct problem from measurements and observations of 
the data that arise from the physical or biological phenomena taking place. Such 
problems are almost invariably ill-posed in the sense that in general either existence, 
uniqueness or continuous dependence on data is no longer true. Although the problems 
of existence and uniqueness in inverse problems can often be ameliorated by 
generalizing the notion of solution and constructing a generalized solution, the key 
attribute of stability is often absent in inverse problems unless further a priori 
information is available. This essential lack of stability usually has dire consequences 
when numerical methods using measured (and hence inexact) data are applied to inverse 
problems. 
 
In view of the inherent problem of instability that is characteristic of inverse problems, 
the mathematical theory of inverse problems focuses on this issue. In particular, the 
primary problem that needs to be addressed is what type of a priori information is 
"normally" available and how can this information be brought into the mathematical 
model? In this context, the solution space and the space of observations are typically 
taken to be Hilbert spaces (but not necessarily the same Hilbert space since one desires 
more of the solution than one demands from the observation). The mathematical model 
itself is then an operator taking one Hilbert space into another, i.e. the mathematical 
foundation of inverse problems is the theory of operators in a Hilbert space. Until 
recently, most of the mathematical theory of inverse problems was focused on linear 
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problems and hence the theory of linear operators in a Hilbert space. However, in recent 
years, more and more attention has been focused on nonlinear problems where, in 
addition to stability, uniqueness issues are seen to play a prominent role. 
 
The purpose of this chapter is to give a brief survey of the field of inverse problems. 
However this is by no means an easy task since the field has experienced tremendous 
growth in the past fifty years covering areas as diverse as computerized tomography, 
synthetic aperture radar, geophysical prospecting and nondestructive testing. Since the 
solution of any inverse problem is to “invert” the model to recover useful information 
about the physical phenomena from the observed image, inverse problems by definition 
must also deal with the subject of imaging. A comprehensive survey of many areas of 
inverse problems and imaging can be found in recently published 1600 page handbook 
[28]. We will make no attempt to survey in twenty pages that which can only be 
partially done in 1600 pages. Instead we have chosen three “canonical" examples of 
inverse problems, have described their physical origin and then presented mathematical 
methods which in each case address the basic issues of existence, uniqueness and 
stability for what are fundamentally ill-posed problems. The mathematical methods that 
we present are of course also applicable to many other inverse problems which are not 
discussed here but can be found in the above mentioned handbook. For the 
mathematically unsophisticated reader we have also presented a brief introduction to 
theory of Hilbert spaces where we have only supposed a pre-requisite of elementary 
linear algebra and calculus. We conclude our chapter by presenting a subjective attempt 
to see into the future of inverse problems. Here, among many possible choices, we have 
chosen the area of obtaining inequalities of physical interest in scattering theory from a 
knowledge of the measured scattered wave. Such techniques provide a rapid method to 
obtain valuable information from what is basically a complicated multi-dimensional 
nonlinear inverse scattering problem with many possible future applications in 
nondestructive testing. Only the future will tell if this direction will in fact bear fruit! 
 
2. Three Examples of Inverse Problems  
 
We will now give three examples of inverse problems which will serve as our model 
problems in what follows. The first example is the backwards heat equation which is 
perhaps the simplest model of a linear inverse problem and was one of the first ill-posed 
problems that was systematically studied (c.f. [27]). The second example is again a 
linear inverse problem, but this time one that is considerably more difficult to analyze. 
This is the problem of computerized tomography which has revolutionized medical 
imaging and for which its inventors won the Nobel Prize for medicine. Our third and 
final example is the inverse scattering problem for acoustic waves which is the best 
known example of a nonlinear inverse problem and, in its electromagnetic version, is 
the mathematical basis of synthetic aperture radar (c.f. [7]).  
 
2.1. The Backwards Heat Equation 
 
Before presenting the ill-posed problem of solving the backwards heat equation, we 
note that in order to investigate a problem that is ill-posed we must answer two basic 
questions: 1) What do we mean by a solution? and 2) How do we construct this 
solution? The answers to these questions are by no means trivial. For example, as 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

COMPUTATIONAL METHODS AND ALGORITHMS - Inverse Problems And Imaging: Past, Present And Future - Fioralba 
Cakoni, David Colton 

©Encyclopedia of Life Support Systems (EOLSS) 

initially posed a solution may not even exist in the classical sense. In this context it is 
worthwhile recalling a remark of Lanczos: “A lack of information cannot be remedied 
by any mathematical trickery". Hence, in order to determine what we mean by a 
solution it is often necessary to introduce “nonstandard" a priori information gained 
from a knowledge of the physical situation that one is trying to model. Even after we 
have resolved the problem of what we mean by a solution, there remains the problem of 
actually constructing such a solution, and this is often complicated by the fact that the 
above mentioned nonstandard information has been incorporated into the mathematical 
model, thus leading to nonstandard problems in analysis.  
 
We now turn our attention to the backwards heat equation. Physically, the problem that 
we are about to consider is to determine the temperature of a solid in the past from a 
knowledge of its temperature in the present and the temperature on the boundary of the 
solid in the past. Mathematically, we can formulate this problem in the following 
manner (assuming zero boundary data and a homogeneous medium): Find a solution u  
of  
 

[ ]3 in 0,tu u D TΔ = ×       (1) 
 

[ ]0 on 0,u D T= ∂ ×       (2) 
 
( ) ( ), foru x T f x x D= ∈       (3) 

 
for a prescribed function f , where D  denotes the given solid. It can be shown that no 
solution exists to this problem unless f  is an analytic function of its three independent 
variable. Furthermore, even if f  is analytic the solution, if it exists, does not depend 
continuously on the data f . To see this let nϕ  be an (orthonormalized) eigenfunction 
corresponding to an eigenvalue nλ  of  
 

3 0 in Dϕ λϕΔ + =        (4) 
 

0 on .u D= ∂        (5) 
 
Then 
 

( ) ( ) ( )1, t Tn
n n

n
u x t x e λϕ

λ
− −=  

 
is a solution (1)-(3) for  
 

( ) ( ) ( )1
n n

n
f x f x xϕ

λ
= =  

 
and since 1ϕ =  where ⋅  is the 2L -norm over D , we have that 1n nf λ= . But for 
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each fixed t , 0 t T≤ < , we have that 
 

( ) ( )1, t Tn
n

n
u x t e λ

λ
− −=  

 
and since nλ →∞  as n →∞  [8] we have that 0nf →  as n →∞  whereas 

( ),nu x t →∞ . Thus the solution of (1)-(3) does not depend continuously on the data 
f . 

 
In Section 4 of this chapter we will show how the above problems can be avoided if we 
look for a solution of (1)-(3) in the class of solutions to (1)-(3) that satisfy an a priori 
bound and define a “solution” to be a function in this class that best approximates the 
data (3) in ( )2L D . 
 
2.2. Computerized Tomography 
 
Literally, tomography means slice imagining. Today this term is applied to many 
methods used to reconstruct the internal structure of a solid object from external 
measurements [17], [26]. We consider here a mathematical model of the measurement 
process used in transmission computerized tomography. Here, a cross-section of the 
human body is scanned by a thin x-ray beam whose intensity loss is recorded by a 
detector and processed by a computer to produce a two-dimensional image of slices of 
the human body which in turn are displayed on a screen. More specifically, objects of 
interest in x-ray imaging are described by a real-valued function defined on 3 , called 
the attenuation coefficient, which quantifies the tendency of an object to absorb or 
scatter x-rays of a given energy. This function, denoted here by ( ) 0xμ ≥  for 3x∈ , 
varies from point-to-point within the object and is usually taken to vanish outside. Our 
model for the interaction of x-rays with matter is based on three basic assumptions: 1) x-
rays travel along straight lines that are not "bent" by the object they pass through, 2) the 
waves making up the x-ray beam are all of the same frequency, and 3) the intensity I of 
the x-ray beam satisfies Beer’s law  
 

( )dI x I
ds

μ= −          (6) 

 
where s  is the arc-length along the straight-line trajectory of the x-ray beam. In a real 
measurement the total energy, iI  incident on the subject along a given line  is given, 
and the total energy oI  emerging from the object along  is measured by an x-ray 
detector. Hence, integrating (6) we obtain  
 

o

i
log .I ds

I
μ= ∫         (7) 

 
By varying the position of the source we can measure the quantity on the left hand side 
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of (7) along a family of lines [17]. In computerized tomography the function ( )xμ , 

( ) 3
1 2 3, ,x x x x= ∈ , is reconstructed from its two-dimensional slices, i.e. 

( ) ( )1 2 1 2, : , ,cf x x x x cμ=  for a given c . Now suppose that the support of ( )xμ  is inside 

the cube [ ] [ ] [ ], , ,a a a a a a− × − × − . For each fixed c  between a±  and each pair 

( ) 1,t Sω ∈ × , where 1S  is the unit circle, we measure the line integral of cf  along the 
line lying on the plane 3x c=  
 
( ) ( ) ( ){ }1 2 3 3 1 2, , : , and , , ,x x x x c x t x x xω= ⋅ = =  

 
that is,  
 

( )cf t s dsω ω
∞ ⊥
−∞

+∫ , 

 
where ( ) ( ) ( )( ): cos ,sinω θ θ θ= , ω⊥ , is the direction perpendicular to ω , i.e. 

( ) ( ) ( )( ): sin ,cosω θ θ θ⊥ = − , and ( )⋅  denotes the 2  dot product. In this idealized 
model it is assumed that on the plane 3x c=  the sources and receivers are moved 
around a circle enclosing the corresponding slice of absorbent material of compact 
support, i.e. 0 2θ π≤ < . 
 
The above measurement model in CT scanning brings us to an essential mathematical 
problem: Can a two-variable function be recovered from a knowledge of its line 
integrals along all lines? This leads to the definition of the Radon Transform which in 
the following is defined only in 2  (see [15], [26] for a discussion on the Radon 
transform in higher dimensions). To this end we identify 1S×  with the space of 
oriented lines ,t ω  given by 
 

{ } { }2
, : : , :t x x t t s Sω ω ω ω⊥= ∈ = = + ∈     (8) 

 
Definition 2.1. Suppose that f  is a function defined in the plane which, for simplicity, 
we assume is continuous with bounded support. The integral of f  along the line ,t ω  is 
denoted by  
 

( ) ( )
,

, .
t

f t fds f t s ds
ω

ω ω ω
∞ ⊥
−∞

= = +∫ ∫R  

 
The collection of all integrals of f  along the line  on the plane defines a function on 

1S× , called the Radon transform of f . 
 
It is not necessary for f  to be either continuous or of bounded support. The Radon 
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transform can be defined for a function f  whose restriction to each line is locally 
integrable and  
 

( ) ( ) 1, for all ,f t s ds t Sω ω ω
∞ ⊥
−∞

+ < ∞ ∈ ×∫     (9) 

 
Thus, computerized x -ray tomography becomes the problem of inverting the Radon 
transform of slices ( ) ( )1 2 1 2, : , ,cf x x x x cμ= , a c a− ≤ ≤ , of the attenuation coefficient 
μ  of the object of interest. We shall address this problem in Section 4 and Section 5, 
where mathematical questions such as uniqueness, stability and of course 
reconstructions methods are briefly discussed. Note that many other problems in 
tomography and imaging can be re-written as the problem of inverting the Radon 
transform of some function of interest (for more details see [15], [25] and [26]). 
 
In practice the above integrals can be measured only for a finite number of lines using 
basically two scanning geometries, namely parallel scanning and fan-beam scanning. 
Thus the real problem in computerized tomography is to reconstruct a slice cf  from a 
finite number of its line integrals. Sometimes it is neither possible nor desirable to scan 
the whole cross-section. One then has to reconstruct cf  from the integrals 
corresponding to limited angle aperture, i.e. one speaks of the incomplete data problem. 
In particular, if a three-dimensional model is adapted in order to increase the efficiency 
of the procedure, the incomplete data problem is the rule. The line sampling and the 
angle aperture of course impact the accuracy and the resolution of the image. Finally, 
the model discussed here is highly idealized and in practice further model corrections 
are introduced to account for the width of the beam, the energy dependence of the 
attenuation etc. We refer the reader to [26] for a more detailed discussion on these 
issues. 
 
2.3. The Inverse Scattering Problem 
 
The propagation of time harmonic acoustic waves of frequency 0ω >  through a 
homogeneous medium in 3  with speed of sound c  is governed by the Helmholtz 
equation 
 

2
3 0u k uΔ + =          (10) 

 
where the wave number k cω= . A solution of the Helmholtz equation whose domain 
of definition contains the exterior of some sphere is called radiating if it satisfies the 
Sommerfeld radiation condition  
 

s
slim 0

r

ur iku
r→∞

⎛ ⎞∂
− =⎜ ⎟∂⎝ ⎠

       (11) 

 
where r x=  and the limit holds uniformly in all directions x̂ x x= . 
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We will consider two basic problems in scattering theory, namely scattering by a 
bounded impenetrable obstacle and scattering by a penetrable inhomogeneous medium 
of compact support. For a vector 3d ∈  with 1d =  the function ikx de ⋅  satisfies the 

Helmholtz equation for all 3x∈ . It is called a plane wave since ( )i kx d te ω⋅ −  is constant 
on the plane kx d tω⋅ −  equal to a constant. Assume that an incident field is given by the 
plane wave ( )i ikx du x e ⋅= . Then the simplest obstacle scattering problem is to find the 

scattered field su  as a radiating solution to the Helmholtz equation in the exterior of a 
bounded scatterer D  such that the total field 
 

i su u u= +          (12) 
 
satisfies the Dirichlet boundary condition 
 

0 on .u D= ∂         (13) 
 
The simplest scattering problem for an inhomogeneous medium assumes that the speed 
of sound is constant outside a bounded domain D . Then, if iu  again is given by 
( )i ikx du x e ⋅= , the total field i su u u= +  satisfies  

 
2 3

3 0 in  u k nuΔ + =       (14) 
 
and the scattered field su  fulfills the Sommerfeld radiation condition (11). Here the 
wave number k  is given by 0k cω=  and 2 2

0n c c=  is the index of refraction where 0c  
is the sound speed in the homogeneous background medium and ( )c c x=  is the speed 

of sound in the inhomogeneous medium. We define ( ) 1n x =  for x D∉ . An absorbing 
medium is modeled by adding an absorption term which leads to a refractive index with 
a positive imaginary part  
 

2
0
2

cn i
kc
γ

= +  

 
where ( )xγ γ=  is the absorbing coefficient.  
 
- 
- 
- 
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