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Summary 
 
This article provides an overview of the fundamental classes of models or mathematical 
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programs used in Operations Research (OR): the standard problems that have been 
developed in mathematical Operations Research (MOR). We identify model 
characteristics, outline fundamental solution methods, identify areas of application for 
linear, integer and nonlinear models, and discuss aspects of implementation. 
 
1. Introduction 

Models and algorithms are the central concepts that distinguish Operations Research 
(OR) from other decision-making approaches. In other words, all Operations Research 
processes involve formulating, analyzing, and manipulating mathematical models. 
Therefore the resolution of a decision problem using OR is based on two abilities: 

• The analyst’s ability to translate the specific decision problem communicated by the 
problem owner, a manager for instance, into a mathematical model that can be used 
to compare the extent to which each alternative solution satisfies the manager’s 
objective. 

• The mathematician’s ability to solve the formal mathematical model efficiently 
using an algorithm, usually employing computer software. 

Mathematical decision models or optimization models have three components: decision 
variables, uncontrollable variables and parameters (model data), and output variables. 
These components are related to each other by mathematical relationships, the so-called  
“model logic.” 

The decision variables describe alternative courses of action that may be considered. In 
an investment problem, decision variables may represent the amount of money to be 
invested in each asset; in a production-scheduling problem they might represent, for 
example, the assignment of a certain machine and of production time to a specific job. 
Decision variables are classified as independent variables, and it is part of the formal or 
mathematical problem to find the best possible values for them. 

In any decision situation there are factors that affect the output but are not under the 
control of the decision maker: for example (market) prices for assets, or the availability 
of machine resources. These uncontrollable variables and parameters place limits on the 
decision maker’s courses of action. These variables are also classified as independent 
and they result in formal constraints being placed on the values for the decision 
variables. 

Output variables reflect the level of effectiveness of a certain course of action, 
indicating how well the decision maker attains his or her goals. In an investment 
problem an output variable may measure the return on investment or capital value; in a 
production-scheduling problem an output variable may quantify the average tardiness of 
jobs. 

The logic of the optimization model links variables and parameters using sets of 
mathematical expressions, such as functional equations or inequalities. Here we 
distinguish two conceptual classes of functions: objective functions and constraints. An 
objective function measures the utility of the decision, i.e. the course of action 
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represented by a particular quantification of the decision variables. A constraint restricts 
the choice of values for the decision variables to meaningful and allowable ones: in 
other words, values that allow the courses of action represented by particular 
quantifications of the decision variables to be implemented in the real decision situation. 

In this way, OR modeling formalizes the decision situation as the task of “optimizing an 
objective function subject to constraints,” and an optimization model has the following 
general form: 
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=≤
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Model (1) is a formal mathematical problem; in mathematics this type of problem is 
referred to as a mathematical programming problem or mathematical program (MP). 
Note that we prefer the term “model” when focusing on the properties of a formal 
construct representing a certain decision problem. We would prefer the term “program” 
when discussing formal mathematical aspects of (1): for instance, the development of 
solution procedures. 

Mathematical programs or optimization models may be divided into different classes, 
with programs/models in the same class sharing specific formal criteria: 

• With respect to the quality of information (data) we distinguish deterministic models 
and stochastic models, 

• With respect to the objective we distinguish single-objective and multiple-objective 
models, 

• With respect to the domain of the decision variables we distinguish continuous and 
discrete models, and 

• With respect to the type of objective function and constraints we distinguish linear 
and nonlinear models. 

If all of the uncontrollable variables of the model are known and cannot vary, then the 
model is termed a deterministic model; if any of the uncontrollable inputs are uncertain, 
it is referred to as a stochastic model. Market demand in production planning models is 
generally uncertain. Stochastic models are more difficult to analyze since the value of 
the output (i.e. the value of the objective function) cannot be determined even if all 
values for the controllable variables are fixed. The conceptual foundation of stochastic 
models, as well as algorithmic aspects and applications, are discussed as a specific topic 
(see Stochastic Operations Research). 

A crucial step in mathematical modeling is the formulation of the objective function, 
which requires the development of a quantitative measure of effectiveness with regard 
to each (managerial) objective. Sometimes more than one objective has been formulated: 
for instance, due to the involvement of different managers in the analysis representing 
different departmental views (perhaps a “production view” and a “marketing view”). In 
these situations it is necessary to combine these measures. A composite measure could 
be a higher organizational goal, or some “abstract” measure of overall utility. 
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Alternatively, the model may explicitly consider multiple objectives simultaneously. 
Specific concepts for analyzing preferences and measuring utility, as well as techniques 
for dealing with multiple objectives, are discussed separately (see Decision Analysis; 
Multicriterion Decision Making). 

 
 

Figure 1. Classification of mathematical programs 

The process of modeling and the relationship between problem, model, and algorithm 
are described in the theme level article (see Optimization and Operations Research). 
The analyst’s challenge in this process is also described in the first topic article focusing 
on fundamentals of OR (see The Role of Modeling). The specific concepts behind OR 
software and its requirements are discussed in the last article under this topic (see The 
Role of Software in Optimization and Operations Research). The “mathematical” 
fundamentals of Operations Research - important special classes of mathematical 
programs/optimization models and related algorithmic concepts - are set out in the 
remaining articles under this theme (see Linear Programming, Nonlinear Programming, 
Dynamic Programming, Discrete Optimization). 

This chapter provides an overview of the fundamental classes of OR-models or 
mathematical programs used in Operations Research (OR): the standard problems that 
have been developed in mathematical Operations Research (MOR). We identify model 
characteristics, outline fundamental solution methods, identify areas of application for 
linear, integer and nonlinear models, and discuss aspects of implementation. It is 
important to note that the standard models and programs that are the focus of MOR are 
purely ideal models, without any correspondence to concrete decision problems. Within 
different application areas the same model may be interpreted differently. Enriched with 
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such an interpretation, these models acquire meaning and come to represent parts of the 
domain-knowledge or theory of the application domain, yet they remain purely ideal. 
Only when enriched with situative (i.e. problem-specific) data replacing the model 
parameters does a model become “real,” in the sense of representing a concrete decision 
problem. 

2. Linear Programming 

A linear program (LP) is a deterministic optimization problem in which the (single) 
objective function is linear in the decision variables and the constraints consist of linear 
(in-)equalities. The canonical form of a linear program is 

nn xcxc ++11maximize  (2) 
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where m, n ∈ N, cj, bi and ai,j are constants, xj are the decision variables (i=1,…,m; 
j=1,…,n), and only one sign (≤, =, ≥) holds for each constraint in (3). The inequalities (4) 
are called non-negativity conditions. In all cases we assume that m ≤ n. 

In linear programming (and in optimization in general) the meaning of the term 
“solution” is quite different from its common application to the final answer of a 
problem. Here any specification of values for the decision variables is termed a solution, 
regardless of whether or not it is a desirable -or even an allowable- choice. A feasible 
solution is a solution for which all the constraints are satisfied, and an optimal solution 
is a feasible solution that has the most favorable value in the objective function. 

In the following sections, we survey a number of important (idealistic) problems that 
lend themselves naturally to being modeled as linear programs. 

- 
- 
- 
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