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Summary 
 
Nonlinear programming is a direct extension of linear programming, when we replace 
linear model functions by nonlinear ones. Numerical algorithms and computer programs 
are widely applicable and commercially available as black box software. However, to 
understand how optimization methods work; how corresponding programs are 
organized; how the results are to be interpreted; and, last but not least, what are the 
limitations of the powerful mathematical technology; it is necessary to understand at 
least the basic terminology. Thus, we present a brief introduction to optimization theory; 
in particular, we introduce optimality criteria for smooth problems. These conditions are 
extremely important to understanding how mathematical algorithms work. The most 
popular classes of constrained nonlinear programming algorithms are introduced, i.e., 
penalty-barrier, interior point, augmented Lagrangian, sequential quadratic 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - Nonlinear Programming - K. Schittkowski and Ch. Zillober 

©Encyclopedia of Life Support Systems (EOLSS) 

programming, sequential linear programming, generalized reduced gradient, and 
sequential convex programming methods. Common features and methodological 
differences are outlined. In particular, we discuss extensions of these methods for 
solving large-scale nonlinear programming problems. 
 
1. Introduction 
 
Whenever a mathematical model is available to simulate a real-life application, a 
straightforward technique is to apply mathematical optimization algorithms for 
minimizing a so-called cost function, subject to constraints. A typical example is the 
minimization of the weight of a mechanical structure under certain loads and constraints 
for admissible stresses, displacements, or dynamic responses. Highly complex industrial 
and academic design problems are solved by using nonlinear programming algorithms, 
without there being any chance of getting equally qualified results by using traditional 
empirical approaches. 
There exists a large variety of different types of optimization problems. Typically, we 
distinguish between at least the following main classes of problems for which the 
mathematical background is well understood, and for which numerical algorithms are 
available. 
 
• Linear programming 
• Quadratic programming 
• Constrained nonlinear programming 
• Dynamic programming 
• Least squares, min-max, l1-optimization 
• Large scale optimization 
• Semidefinite programming 
• Non-smooth optimization 
• Mixed-integer programming 
• Optimal control 
• Stochastic optimization 
• Global optimization 
• Multicriteria optimization 
 
In this review, we consider only smooth, i.e., differentiable constrained nonlinear 
programming problems: 
 

 

min ( )
( ) 0, 1, ...,  ,

( ) 0, 1, ..., ,

.

n

j e

j e

l u

f x x
g x j m

g x j m m

x x x

∈
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≥ = +

≤ ≤

     (1) 

 
Here, x is an n-dimensional parameter vector, also called the vector of design variables, 
and f(x) is the objective function or cost function to be minimized under nonlinear 
equality and inequality constraints given by gj(x), j = 1, . . . , m. It is assumed that these 
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functions are continuously differentiable in n . The above formulation implies that we 
do not allow any discrete or integer variables.  Besides this, we do not require any 
further mathematical structure of the model functions. For a discussion of non-smooth, 
optimization problems see Non-Smooth Optimization. 
 
To facilitate the subsequent notation, we assume that upper and lower bounds xu and xl 
are not handled separately, i.e., that they are considered as general inequality 
constraints. Then we get the Nonlinear Programming Problem (NLP): 
 

 
min ( )

( ) 0, 1, ...,  ,

( ) 0, 1, ..., .

n

j e

j e

f x x
g x j m

g x j m m
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= =
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     (2) 

 
Although optimization software can be used in the form of a black box, it is highly 
desirable to understand at least the basic ideas of the mathematical analysis behind the 
problem. One reason is that there are many situations, which could prevent an algorithm 
from approaching a solution in the correct way. Typically, an optimization algorithm 
breaks down with an error message and the corresponding documentation contains 
many technical phrases that must be understood in order to find a remedy. Another 
reason is that one would like to get an idea about how accurate the obtained solution is, 
and whether it is possible to improve or verify an existing approximation. 
 
For these reasons, we present a very brief outline of the optimization theory behind the 
presented algorithms, on a very elementary level. First, we need some notations for the 
first and second derivatives of a differentiable function. For mathematical basics see 
Differential Calculus. The gradient of a real-valued function f(x) is: 
 

 
1

( ) : ( ), ..., ( ) .
T

n
f x f x f x

x x
⎛ ⎞∂ ∂

∇ = ⎜ ⎟
∂ ∂⎝ ⎠

     (3) 

 
A second differentiation gives the Hessian matrix of f(x). 
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The Jacobian matrix of a vector-valued function F(x) = (f1(x), . . . ,  fl(x))T is 
 

 
1, ..., ; 1, ...,

( ) : ( ) ,j
i i n j l

F x f x
x

= =
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∇ = ⎜ ⎟

∂⎝ ⎠
     (5) 

 
also written in the form 
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 ( )1( ) : ( ),..., ( ) .lF x f x f x∇ = ∇ ∇       (6) 
 
The fundamental tool for deriving optimality conditions and optimization algorithms is 
the so-called Lagrangian function: 
 

 
1

( , ) : ( ) ( )
m

j j
j

L x u f x u g x
=

= −∑         (7) 

 
defined for all nx∈  and 1( , ..., )T m

mu u u= ∈ . The purpose of L(x, u) is to link the 
objective function f(x) and constraints gj(x), j = 1, . . . , m. The variables uj are called the 
Lagrangian multipliers of the nonlinear programming problem. 
 
Moreover, we denote the feasible region by P, i.e., the set of all feasible solutions: 
 
 : { : ( ) 0, 1, ..., , ( ) 0, 1, ..., }.n

j e j eP x g x j m g x j m m= ∈ = = ≥ = +            (8) 
 
The active inequality constraints with respect to x P∈  are characterized by the index 
set: 
 
 ( ) : { : ( ) 0, }j eI x j g x m j m= = < ≤ .             (9) 
 
We very briefly discuss the main strategies behind a few classes of nonlinear 
programming algorithms: 
 
• Penalty and barrier methods 
• Augmented lagrangian methods 
• Interior point methods 
• Sequential linear programming methods 
• Sequential quadratic programming methods 
• Generalized reduced gradient methods 
• Sequential convex programming methods 
 
In particular, we also discuss extensions of these methods to solve large-scale 
optimization problems. 
 
Each implementation of a method in one of these subclasses requires additional 
decisions on a special variant or parameter selection, so that different codes of the same 
group may possess completely different performance characteristics in practice. 
Moreover, there exist combinations of the fundamental strategies, making it even more 
difficult to classify nonlinear programming algorithms. Comparative studies of codes 
for the general model have been performed in the past. They either proceed from 
randomly generated test examples or are based on artificial or simple application 
problems reflecting special mathematical properties. 
 
2. Optimality Conditions 
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2.1 Convexity and Constraint Qualification 
 
In general, we can only expect that an optimization algorithm computes a local 
minimum and not a global one; i.e., a point x* with f(x*) ≤ f(x) for all *( )x P U x∈ ∩ ; 
where U(x*) is a suitable neighborhood of x. However, if the problem is convex, then 
each local minimum of a nonlinear programming problem is a global one.  For example, 
if f is convex, gj linear for j = 1, . . . , me , and gj concave for j = me + 1, …, m, then these 
conditions force the feasible region P to be a convex set. 
 
Definition 1 
A function : nf →  is called convex, if 
 
 ( (1 ) ) ( ) (1 ) ( )f x y f x f yλ λ λ λ+ − ≤ + −              (10) 

for all , nx y∈  and (0,1)λ ∈ , and concave, if we replace ' ≤ ' by ' ≥ ' in the above 
inequality. 
 
For a twice differentiable function f , convexity is equivalent to the property that ∇2f(x) 
is positive semidefinite; i.e., zT∇2f(x)z ≥ 0 for all z ∈ n . Convexity of an optimization 
problem is important mainly from the theoretical point of view, since many 
convergence, duality or other theorems can be proved only for this special case. In 
practical situations, however, we have hardly a chance to test whether a numerical 
problem is convex or not. 
 
To be able to formulate the subsequent optimality conditions, we need a special 
assumption, namely, to avoid irregular behavior of the feasible sets P at a local solution. 
We call it constraint qualification, which is to be considered as some kind of regularity 
in a more general form. In our situation, it is sufficient to proceed from the following 
definition. 
 
Definition 2  
A constraint qualification in *x P∈  is satisfied, if the gradients of active constraints, 
i.e., the vectors *( )jg x∇  for *{1, ..., } ( )ej m I x∈ ∪  , are linearly independent. 
 
2.2  Karush-Kuhn-Tucker Conditions 
 
For developing and understanding an optimization method, the subsequent theorems are 
essential. They characterize optimality and are, therefore, important for testing a current 
iterate with respect to its convergence accuracy. 
 
Theorem 1 (Necessary Second Order Optimality Conditions) 
 
Let f and gj be twice continuously differentiable for j = 1, . . . , m, x* be a local minimizer 
of (2) and the constraint qualification in x* be satisfied. Then there exists a u* ∈ m , 
such that: 
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Statement a) of the theorem is called the Karush-Kuhn-Tucker condition. It says that at 
a local solution, the gradient of the objective function can be expressed by a linear 
combination of gradients of active constraints. Moreover, statement b) implies that the 
Lagrangian function is positive semidefinite on the tangential space defined by the 
active constraints. For a discussion of general duality-based optimality conditions see 
Duality Theory. 
 
It is not possible to omit the constraint qualification, as shown by the subsequent 
example. 
 
Example 1  
 
Let 

 
1 2 1

1 1 2 2
2

2 1 2 2 1

( , ) : ,
( , ) : 0,

( , ) : 0.

f x x x
g x x x

g x x x x

=

= − ≥

= − ≥

         (13) 

 
Since P = {(0, 0)}, x* = (0, 0) is the optimal solution. However, we have 

 * *
* *
1 2

1 0
( , )

0x L x u
u u

⎛ ⎞ ⎛ ⎞
∇ = ≠⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

          (14) 

 
showing that the Karush-Kuhn-Tucker-condition cannot be satisfied. 
It is also possible to derive a very similar reverse optimality condition that does not 
require the constraint qualification. 
 
Theorem 2 (Sufficient Second Order Optimality Conditions)  
 
Let f and gj be twice continuously differentiable for j = 1, …, m and x* ∈ n , u* ∈ m  
be given, so that the following conditions are satisfied 
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Then x* is an isolated local minimum of f on P, i.e., there is a neighborhood U(x*) of x* 
with *( ) ( )f x f x<  for all * *( ) ,x U x P x x∈ ∩ ≠ . 
 
When reading a nonlinear programming textbook, one has to be aware of the fact that 
the optimality conditions are often stated in a slightly different way. The formulation of 
a NLP problem varies from author to author, depending upon whether a minimum or a 
maximum is searched, whether the inequality constraints use ≤ instead of ≥, or whether 
upper and lower bounds are included. Also, there exist different versions of the above 
statements, where the assumptions are either more general or more specialized. 
 
Now let us consider a few examples. 
 
Example 2  
 
Assume that n = 2, me = 0, m = 2, and that x is an optimal solution with active 
constraints g1 and g2. Then the gradient of the objective function must point into the 
cone spanned by the gradients ∇g1(x*) and ∇g2(x*). In other words, there must exist two 
multipliers u1

* ≥ 0 and u2
* ≥ 0 with 

 
 * * * * *

1 1 2 2( ) ( ) ( ).f x u g x u g x∇ = ∇ + ∇          (17) 
 
Example 3  
 
Consider the simple NLP 
 

 

2
1 2

2 2
1 1 2

2 1 2

( ) : ,

( ) : 9 0,
( ) : 1 0.

f x x x

g x x x
g x x x

= +

= − − ≥

= − − ≥

         (18) 

 
We observe immediately that x*= (0, -3)T is the unique optimal solution of the convex 
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optimization problem. From the Karush-Kuhn-Tucker condition 
 

 1 1 1 21
1 2

2 1 2 2

2 2 (1 )2 1
( , ) 0

2 1 1 2 1x
x x u ux

L x u u u
x u x u

− + +−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
∇ = − − = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − + +⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

         (19) 

 
we get the multipliers *

1 1 6u =  and *
2 0u = . Moreover, the Hessian matrix of the 

Lagrangian function 
 

 2 * * 7 / 3 0
( , )

0 1/ 3x L x u ⎛ ⎞
∇ = ⎜ ⎟

⎝ ⎠
          (20) 

 
is positive definite. 
 
 
- 
- 
- 
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