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Summary 
 
This chapter presents the many roles of software in optimization. Obtaining a solution 
has been the focus of mathematical programming, and now one must consider different 
architectures and algorithm environments. But the role goes beyond the numerical 
computation, integrating concerns for supporting optimization modeling and analysis. 
Beginning with a historical perspective this chapter describes modern developments, 
including that of an intelligent mathematical programming system. 
 
1. Introduction 
 
The promise of operations research is to solve decision-making problems, and a large 
part uses optimization. The mathematical program is given by the following:  
 
optimize ( ) : , ( ) 0, ( ) 0,f x x X g x h x∈ ≤ =  (1) 
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where ,  : , : , :n m MX f X g h X⊆ , and optimize is either minimize or 
maximize.  
 
In words, we seek to find a minimum or maximum of a real-valued function, possibly 
subject to some mixture of inequality and equality constraints. There are variations of 
this form, such as multiple objectives, goals, uncertainty, and logical expressions. Each 
variation is approached by using the above standard form, and generally, this can be 
done in more than one way. More discussion of this and particular mathematical 
programs are given in the Mathematical Programming Glossary.  
 
The basic role of software is to enable an expression of a mathematical program, obtain 
a solution and provide tools to support model management and analysis of the results. In 
this chapter, we begin with some historical perspectives about software and 
optimization, followed by overviews of software designed to obtain a solution. Software 
for modeling has its own history, but the focus here is on current systems and needs for 
future designs. Then, computer-assisted analysis is explained, drawing from two bodies 
of work and pointing towards opportunities for enhanced roles of software. This leads 
naturally into a description of intelligent mathematical programming systems, marking 
new roles for future systems. The concluding section discusses current developments 
and the role of software in the broader field of operations research. 
 
2. Historical Perspectives 
 
Orchard-Hays gave an excellent historical account of the early years of mathematical 
programming and its inseparable ties to the computing field. (Also see his companion 
papers, as well as others, in the same proceedings.) Mathematical programming was 
treated as a process, rather than an object. As such, people needed a way to express their 
model, often with a general language like FORTRAN or with what were then called 
matrix generators, which evolved into modeling languages. Some evolved further into 
modeling systems. 
 
This emerged in the early years, when system was used to denote the fact that it 
contained complete optimization, taking data as an input file and producing a solution 
file, rather than being a subroutine library. Currently, both the mathematical 
programming system (MPS) and the library approach (e.g., IBM OSL) are used. With 
the growth of object-oriented programming, there is a third paradigm: a shell that serves 
as a main program with generic classes; the programmer adds particular classes within 
this framework to represent a particular problem and algorithm. Current systems that 
use this paradigm are ABACUS, MINTO and PICO. 
 
There were significant developments in the 1980s, not the least of which was the 
explosive growth of affordable computers. Waren, et al., give the status of nonlinear 
programming (NLP), with the emergence of PCs cited as a significant change that 
affects how algorithms are implemented and what has changed in importance, e.g., 
space (disk and memory) is no longer an issue (also see Fourer's guide in 
Bibliography). This is in some contrast to most of the more recent surveys, which still 
emphasize the algorithms apart from their implementation.  
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In integer programming, a recent plenary talk by Ralph Gomory suggested that modern 
computers can make some of the group-theoretic ideas, which had been abandoned in 
the 1970s, more practical. Following this note, Karla Hoffman gave a perceptive insight 
using dinosaurs flying jets as a metaphor to emphasize the role of computing power 
running old algorithms. Her primary assessment, however, was that it is the formulation 
that has the most impact on solvability, and this is the theme to consider as the modern 
role for software. In fact, this was a major goal of the project to develop an Intelligent 
Mathematical Programming System (IMPS). 
 
3. Obtaining a Solution 
 
A solution is a global optimum, or a declaration that no optimum exists, preferably with 
a reason, such as infeasible or unbounded. Software cannot guarantee that a correct 
conclusion is reached. One reason is computational error, causing inaccurate results, 
even for linear programs. Some problems use only integer arithmetic, where there is no 
computational error, but they are typically hard problems that cannot guarantee an 
accurate result due to how long it would take to consider the large number of possible 
solutions. It is this latter source of inaccuracy, that is the cutting edge of optimization 
software. 
 
Several recent surveys provide details on the current state of the art in obtaining a global 
optimum, drawing from classical methods based on local search (e.g., on calculus). 
Because we cannot obtain exact solutions to hard problems in a practical amount of 
time, two basic approaches have been taken: metaheuristics, such as a Tabu Search, and 
approximation algorithms with guaranteed bounds. Software to implement these can 
make a difference in their performance (see Global Optimization).  
 
In discrete optimization some exact methods exist for special situations, like dynamic 
programming, , but the branch and bound/cut remains the primary exact method. It is 
also used in continuous (global) optimization, so branch and bound is a general exact 
method. These typically use linear programming to solve relaxation problems for 
bounds, cut generation, and search guidance. The relaxations drop integer restrictions, 
and linear functions are used to approximate nonlinear ones (typically using the Taylor 
expansion). A software issue is how fast the linear programs are solved when used this 
way. The linear program (LP) relaxation of a combinatorial optimization problem has 
very different characteristics than a true LP, such as one that represents product 
distribution. This implies, for example, that the LP algorithm control parameters need 
adjustments from their default values since they are typically tuned with test problems 
that are true LPs (see Linear Programming, Dynamic Programming and Bellman's 
Principle , Combinatorial Optimization and Integer Programming). 
 
3.1. Data structures, Controls and Interfaces 
 
Wirth's charming equation, Algorithms + Data Structures = Programs, is not quite 
enough to be a system capable of solving optimization problems with computing 
paradigms available in 2002. To it, we must add: 
 
Programs + Controls + Interfaces = Systems  
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There have always been algorithm controls, but interfaces have become much more 
sophisticated, especially with graphics. 
 
Most publications in mathematical programming present algorithms, but very few 
describe the data structures. Fundamentally, an algorithm is a precise sequence of steps. 
We often refer to an algorithm family, or algorithm strategy, to mean some steps are not 
completely defined, leaving room for tactical variations. For example, Figure 1 gives 
the simplex algorithm strategy that uses the 2-phase method of getting an initial feasible 
solution (or ascertaining that none exists), leaving such steps as pricing open to different 
algorithm tactics. 
 

 
 

Figure1: Two-Phase Simplex Algorithm Strategy 
 
A data structure is how we store the information. Even a specific algorithm, such as 
Dantzig's Specific Simplex Method, does not specify the type of arithmetic or other 
things that depend upon the data structure (and the computing environment). In the case 
of a simplex algorithm, a typical data structure is to store the data in a sparse format. 
For example, the LP matrix is stored by columns with each column having a pair of data 
entries for each nonzero: 
 
row index | value  
 
In particular, suppose we have a transportation problem with s sources and d 
destinations. The dimensions of the matrix are m = s + d rows (one per node) and n = sd 
columns (one per arc). Each column of the node-arc incidence matrix has exactly two 
non-zeroes, -1 for the source and +1 for the destination. The total number of nonzeroes, 
therefore, is 2n, and its density is 2n

mn
, which reduces to 2

m
. The greater the number of 

nodes (m), the greater the sparsity, because the density becomes small as m becomes 
large. To illustrate, consider the following node-arc incidence matrix, which represents 
a transportation problem that has 2 sources and 3 destinations. 
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1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

A

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (2) 

 
There are 12 nonzero entries in this 5 × 6 matrix, so its density is 

12
30 , which is 0.4. For 

more realistic sizes, where 1000m , the density is less than 1%. Many large LPs have 
an embedded network structure, which is one reason they tend to be very sparse. 
 
Nonlinear functions are represented by their parse tree, or something very similar. 
Figure 2 shows an example. 

 
 

Figure 2: Parse Tree for 2 3
1 2 1 1 2 2( ;  )f x x x x x x= − +  

 
Solvers call upon this tree for function evaluation. Modern methods use automatic 
differentiation, which stores nonlinear functions in a similar data structure, designed for 
rapid calculations of the function and its derivatives (if they exist). 
 
3.2. Parallel Algorithms 
 
One of the current topics of research is how to design parallel algorithms. An early use 
of parallel architecture was for Dantzig-Wolfe decomposition in LP. Many types of 
architectures and algorithms are in the text by Bertsekas and Tsitsiklis, and more recent 
ideas are in proceedings, notably those edited by Heath, et al. and by Pardalos, et al.  
 
To illustrate how a parallel architecture can be used effectively, consider a 
parallelization of the conjugate gradient method (see Nonlinear Programming). We are 
given a quadratic form, 1

2
Tx Qx cx− , where Q is an n × n symmetric, positive-definite 

matrix. We know its (unique) minimum occurs at the solution to the equation, Qx = c, 
and one way to compute this is by the following iterations: 
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1 ,t t t tx x dα+ = +  (3) 
 
where x0 is given, d0 = − g0 = c − Qx0, and 
 

 
( )

t t
t

t T t
g d

d Qd
α = −  (4) 

 
 1( )t t T t td g dβ −= − +  (5) 

 
1 1

1 1
( )
( )

t T t
t

t T t
g Qd
d Qd

β
− −

− −
=  (6) 

 

 ( )1
2

( )t t T T
tx x

g x Q c x Qx cx
=

= − = ∇ −  (7) 

 
Let us assess the computations at an iteration. At the beginning of iteration t, we have 
already computed xt, dt-1 , and gt-1 (gt-1 )T. We must compute gt = Qxt − c and gt(gt)T ; 
from these, we use equations (6) and (5) to compute βt and d t, respectively. Finally, we 
use equation (3) to compute xt+1, thereby completing the iteration. 
 
Suppose p ≥ n, so we can assign a processor to compute results pertaining to one 
coordinate of the vectors. Let processor i be given the ith row of Q, denoted Qi•. The 
vector Qxt - c is done completely in parallel, with processor i computing Qi• xt − ci. 
These are communicated to a designated processor, which thus obtains gt. This 
processor could compute gt(gt)T, or it could broadcast gt to the other processors and have 
them compute ( t

ig )2 and send its value back for accumulation. Which is better depends 
on communication time versus the time to compute an inner product on the main 
processor. Alternative schemes use hierarchies to accumulate inner products, and much 
of the design depends not only upon the particular architecture, but also upon whether 
the matrix and vectors are sparse.  
 
This illustrates the general notion that one way to design a parallel algorithm is to use 
parallel linear algebra. Many optimization algorithms can be parallelized this way, but 
some do not use linear algebra centrally. In particular, combinatorial optimization 
algorithms can take other advantage of parallel computation.  
 
Consider the dynamic programming recursion for the 0-1 knapsack problem: 
 

1 1( ) max{ ( ), ( )} for { , 1, ..., }.j j j j j j jf f c f a a a bβ β β β− −= + − ∈ +  (8) 
 
for j = 1, …, n, where f0 ≡ 0 (see Discrete Optimization, Dynamic Programming and 
Bellman's Principle ). Suppose we decompose each iteration by having each processor 
compute fj for an equal number of state values. For notational convenience, let b = kp 
for some positive integer, k. In words, let the total size of the knapsack be an integer 
multiple of the number of processors. This means that each processor has k state values 
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to compute, and each takes the same amount of time. This is clearly a logical 
decomposition, but its merit depends on communication time, which depends upon the 
particular parallel architecture.  
 
Scheduling tasks to processors is the key problem in designing a parallel algorithm. 
Load balancing is a proxy goal for maximizing the speedup, whose reciprocal is the 
fraction of the best possible serial computation time. Let T*(s) be the best time it takes 
to solve a problem in some class of size s on a serial computer. (The "size" is frequently 
taken to mean the number of variables, but it could account for other data values.) Let 
Tp(s) be the time it takes a parallel algorithm to solve the same problem with p 
processors. Then,  
 

* ( )( ) .
( )p

p

T sSpeedup S s
T s

= =  (9) 

 
The best one can hope for is Sp(s) = p — equivalently, Tp(s) = T*(s)/p. This occurs if the 
best serial algorithm can have its computations decomposed perfectly into p parts, each 
taking the same amount of time. This could never be fully achieved, even with perfect 
load balancing, due to message passing that is needed − that is, the information 
produced by a processor must be communicated to at least one other processor.  
 
The speedup of the dynamic programming parallelization is nearly linear. We have 
 

*

*
( , )( , ) ,

( , ) ( , )
p

T n bS n b
T n k M n k

=
+

 (10) 

 
where M(n, k) is the communication time for n variables and k states. The size is given 
as the number of variables (n) and the number of states (b), but we can consider the cost 
per iteration that is, divide by n, since both algorithms perform n iterations. Then, 
 

( )( , ) .
( ) ( )p

kpS n kp
k k
τ

τ μ
=

+
 (11) 

 
Further, each state requires a simple comparison of two values plus a storage of the 
result, so τ(kp) = pτ (k). Substituting this into the above expression simplifies the 
speedup, which is now independent of the number of variables: 
 

( , ) ,
( )1
( )

p
pS n b

k
k

μ
τ

=
+

 (12) 

 
The speedup depends on the communication time relative to the computation time, 
which is the ratio: ( )

( )
k
k

μ
τ

. We can see that ( )K kτ α≈  for some constant α, but μ(k) 

could be O(k) or O(log k), depending upon the architecture. A worst case has 
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( , )pS n kp pγ≈  for some constant, γ, which is still very good for large state values. 
Doubling the number of processors doubles the speedup. The more favorable case is 
when μ (k) = O(log k), for then limk→∞ Sp(n, kp) → p. Currently, one of the most active 
places for such research is Sandia National Laboratories, with the ASCI red machine 
that consists of more than 9000 tightly-coupled Intel processors.  
 
They have an object-oriented Parallel Integer and Combinatorial Optimization code, 
called PICO. Despite its title, PICO is a framework designed for general parallel branch 
and bound, including nonlinear programs with continuous-valued variables. While there 
have been some efforts to use parallel algorithms for hard problems, this is still a 
frontier with many design decisions and experiments ahead. One class of algorithms 
that have a natural decomposition to balance the load among the processors is the class 
of stochastic, population-based, evolutionary algorithms. 
 
 Some classes of hard nonlinear problems, such as in design optimization, involve 
expensive functional evaluations. Often, f (x) is the solution to a differential equation or 
a simulation, where x is a vector of design parameters. Although x is not large, obtaining 
f (x) can take hours. Parallel algorithms are being developed for such problems, some 
with a speedup on the order of p . 
 
- 
- 
- 
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