
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

THE ROLE OF SOFTWARE IN OPTIMIZATION AND
OPERATIONS RESEARCH

Harvey J. Greenberg
University of Colorado at Denver, USA

Keywords: optimization, mathematical programming, computational economics,
mathematical programming systems

Contents

1. Introduction
2. Historical Perspectives
3. Obtaining a Solution
3.1. Data structures, Controls and Interfaces
3.2. Parallel Algorithms
4. Modeling
4.1. Expressive Power
4.2. Logic Programming and Optimization
5. Computer-Assisted Analysis
5.1. Query and Reporting
5.2. Debugging
6. Intelligent Mathematical Programming Systems
6.1. Formulation
6.2. Model and Scenario Management
6.3. Discourse
6.4. Analysis
7. Beyond the Horizon
Acknowledgement
Glossary
Bibliography
Biographical Sketch

Summary

This chapter presents the many roles of software in optimization. Obtaining a solution
has been the focus of mathematical programming, and now one must consider different
architectures and algorithm environments. But the role goes beyond the numerical
computation, integrating concerns for supporting optimization modeling and analysis.
Beginning with a historical perspective this chapter describes modern developments,
including that of an intelligent mathematical programming system.

1. Introduction

The promise of operations research is to solve decision-making problems, and a large
part uses optimization. The mathematical program is given by the following:

optimize () : , () 0, () 0,f x x X g x h x∈ ≤ = (1)

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

where , : , : , :n m MX f X g h X⊆ , and optimize is either minimize or
maximize.

In words, we seek to find a minimum or maximum of a real-valued function, possibly
subject to some mixture of inequality and equality constraints. There are variations of
this form, such as multiple objectives, goals, uncertainty, and logical expressions. Each
variation is approached by using the above standard form, and generally, this can be
done in more than one way. More discussion of this and particular mathematical
programs are given in the Mathematical Programming Glossary.

The basic role of software is to enable an expression of a mathematical program, obtain
a solution and provide tools to support model management and analysis of the results. In
this chapter, we begin with some historical perspectives about software and
optimization, followed by overviews of software designed to obtain a solution. Software
for modeling has its own history, but the focus here is on current systems and needs for
future designs. Then, computer-assisted analysis is explained, drawing from two bodies
of work and pointing towards opportunities for enhanced roles of software. This leads
naturally into a description of intelligent mathematical programming systems, marking
new roles for future systems. The concluding section discusses current developments
and the role of software in the broader field of operations research.

2. Historical Perspectives

Orchard-Hays gave an excellent historical account of the early years of mathematical
programming and its inseparable ties to the computing field. (Also see his companion
papers, as well as others, in the same proceedings.) Mathematical programming was
treated as a process, rather than an object. As such, people needed a way to express their
model, often with a general language like FORTRAN or with what were then called
matrix generators, which evolved into modeling languages. Some evolved further into
modeling systems.

This emerged in the early years, when system was used to denote the fact that it
contained complete optimization, taking data as an input file and producing a solution
file, rather than being a subroutine library. Currently, both the mathematical
programming system (MPS) and the library approach (e.g., IBM OSL) are used. With
the growth of object-oriented programming, there is a third paradigm: a shell that serves
as a main program with generic classes; the programmer adds particular classes within
this framework to represent a particular problem and algorithm. Current systems that
use this paradigm are ABACUS, MINTO and PICO.

There were significant developments in the 1980s, not the least of which was the
explosive growth of affordable computers. Waren, et al., give the status of nonlinear
programming (NLP), with the emergence of PCs cited as a significant change that
affects how algorithms are implemented and what has changed in importance, e.g.,
space (disk and memory) is no longer an issue (also see Fourer's guide in
Bibliography). This is in some contrast to most of the more recent surveys, which still
emphasize the algorithms apart from their implementation.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

In integer programming, a recent plenary talk by Ralph Gomory suggested that modern
computers can make some of the group-theoretic ideas, which had been abandoned in
the 1970s, more practical. Following this note, Karla Hoffman gave a perceptive insight
using dinosaurs flying jets as a metaphor to emphasize the role of computing power
running old algorithms. Her primary assessment, however, was that it is the formulation
that has the most impact on solvability, and this is the theme to consider as the modern
role for software. In fact, this was a major goal of the project to develop an Intelligent
Mathematical Programming System (IMPS).

3. Obtaining a Solution

A solution is a global optimum, or a declaration that no optimum exists, preferably with
a reason, such as infeasible or unbounded. Software cannot guarantee that a correct
conclusion is reached. One reason is computational error, causing inaccurate results,
even for linear programs. Some problems use only integer arithmetic, where there is no
computational error, but they are typically hard problems that cannot guarantee an
accurate result due to how long it would take to consider the large number of possible
solutions. It is this latter source of inaccuracy, that is the cutting edge of optimization
software.

Several recent surveys provide details on the current state of the art in obtaining a global
optimum, drawing from classical methods based on local search (e.g., on calculus).
Because we cannot obtain exact solutions to hard problems in a practical amount of
time, two basic approaches have been taken: metaheuristics, such as a Tabu Search, and
approximation algorithms with guaranteed bounds. Software to implement these can
make a difference in their performance (see Global Optimization).

In discrete optimization some exact methods exist for special situations, like dynamic
programming, , but the branch and bound/cut remains the primary exact method. It is
also used in continuous (global) optimization, so branch and bound is a general exact
method. These typically use linear programming to solve relaxation problems for
bounds, cut generation, and search guidance. The relaxations drop integer restrictions,
and linear functions are used to approximate nonlinear ones (typically using the Taylor
expansion). A software issue is how fast the linear programs are solved when used this
way. The linear program (LP) relaxation of a combinatorial optimization problem has
very different characteristics than a true LP, such as one that represents product
distribution. This implies, for example, that the LP algorithm control parameters need
adjustments from their default values since they are typically tuned with test problems
that are true LPs (see Linear Programming, Dynamic Programming and Bellman's
Principle , Combinatorial Optimization and Integer Programming).

3.1. Data structures, Controls and Interfaces

Wirth's charming equation, Algorithms + Data Structures = Programs, is not quite
enough to be a system capable of solving optimization problems with computing
paradigms available in 2002. To it, we must add:

Programs + Controls + Interfaces = Systems

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

There have always been algorithm controls, but interfaces have become much more
sophisticated, especially with graphics.

Most publications in mathematical programming present algorithms, but very few
describe the data structures. Fundamentally, an algorithm is a precise sequence of steps.
We often refer to an algorithm family, or algorithm strategy, to mean some steps are not
completely defined, leaving room for tactical variations. For example, Figure 1 gives
the simplex algorithm strategy that uses the 2-phase method of getting an initial feasible
solution (or ascertaining that none exists), leaving such steps as pricing open to different
algorithm tactics.

Figure1: Two-Phase Simplex Algorithm Strategy

A data structure is how we store the information. Even a specific algorithm, such as
Dantzig's Specific Simplex Method, does not specify the type of arithmetic or other
things that depend upon the data structure (and the computing environment). In the case
of a simplex algorithm, a typical data structure is to store the data in a sparse format.
For example, the LP matrix is stored by columns with each column having a pair of data
entries for each nonzero:

row index | value

In particular, suppose we have a transportation problem with s sources and d
destinations. The dimensions of the matrix are m = s + d rows (one per node) and n = sd
columns (one per arc). Each column of the node-arc incidence matrix has exactly two
non-zeroes, -1 for the source and +1 for the destination. The total number of nonzeroes,
therefore, is 2n, and its density is 2n

mn
, which reduces to 2

m
. The greater the number of

nodes (m), the greater the sparsity, because the density becomes small as m becomes
large. To illustrate, consider the following node-arc incidence matrix, which represents
a transportation problem that has 2 sources and 3 destinations.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

A

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2)

There are 12 nonzero entries in this 5 × 6 matrix, so its density is

12
30 , which is 0.4. For

more realistic sizes, where 1000m , the density is less than 1%. Many large LPs have
an embedded network structure, which is one reason they tend to be very sparse.

Nonlinear functions are represented by their parse tree, or something very similar.
Figure 2 shows an example.

Figure 2: Parse Tree for 2 3
1 2 1 1 2 2(;)f x x x x x x= − +

Solvers call upon this tree for function evaluation. Modern methods use automatic
differentiation, which stores nonlinear functions in a similar data structure, designed for
rapid calculations of the function and its derivatives (if they exist).

3.2. Parallel Algorithms

One of the current topics of research is how to design parallel algorithms. An early use
of parallel architecture was for Dantzig-Wolfe decomposition in LP. Many types of
architectures and algorithms are in the text by Bertsekas and Tsitsiklis, and more recent
ideas are in proceedings, notably those edited by Heath, et al. and by Pardalos, et al.

To illustrate how a parallel architecture can be used effectively, consider a
parallelization of the conjugate gradient method (see Nonlinear Programming). We are
given a quadratic form, 1

2
Tx Qx cx− , where Q is an n × n symmetric, positive-definite

matrix. We know its (unique) minimum occurs at the solution to the equation, Qx = c,
and one way to compute this is by the following iterations:

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

1 ,t t t tx x dα+ = + (3)

where x0 is given, d0 = − g0 = c − Qx0, and

()

t t
t

t T t
g d

d Qd
α = − (4)

 1()t t T t td g dβ −= − + (5)

1 1

1 1
()
()

t T t
t

t T t
g Qd
d Qd

β
− −

− −
= (6)

 ()1
2

()t t T T
tx x

g x Q c x Qx cx
=

= − = ∇ − (7)

Let us assess the computations at an iteration. At the beginning of iteration t, we have
already computed xt, dt-1 , and gt-1 (gt-1)T. We must compute gt = Qxt − c and gt(gt)T ;
from these, we use equations (6) and (5) to compute βt and d t, respectively. Finally, we
use equation (3) to compute xt+1, thereby completing the iteration.

Suppose p ≥ n, so we can assign a processor to compute results pertaining to one
coordinate of the vectors. Let processor i be given the ith row of Q, denoted Qi•. The
vector Qxt - c is done completely in parallel, with processor i computing Qi• xt − ci.
These are communicated to a designated processor, which thus obtains gt. This
processor could compute gt(gt)T, or it could broadcast gt to the other processors and have
them compute (t

ig)2 and send its value back for accumulation. Which is better depends
on communication time versus the time to compute an inner product on the main
processor. Alternative schemes use hierarchies to accumulate inner products, and much
of the design depends not only upon the particular architecture, but also upon whether
the matrix and vectors are sparse.

This illustrates the general notion that one way to design a parallel algorithm is to use
parallel linear algebra. Many optimization algorithms can be parallelized this way, but
some do not use linear algebra centrally. In particular, combinatorial optimization
algorithms can take other advantage of parallel computation.

Consider the dynamic programming recursion for the 0-1 knapsack problem:

1 1() max{ (), ()} for { , 1, ..., }.j j j j j j jf f c f a a a bβ β β β− −= + − ∈ + (8)

for j = 1, …, n, where f0 ≡ 0 (see Discrete Optimization, Dynamic Programming and
Bellman's Principle). Suppose we decompose each iteration by having each processor
compute fj for an equal number of state values. For notational convenience, let b = kp
for some positive integer, k. In words, let the total size of the knapsack be an integer
multiple of the number of processors. This means that each processor has k state values

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

to compute, and each takes the same amount of time. This is clearly a logical
decomposition, but its merit depends on communication time, which depends upon the
particular parallel architecture.

Scheduling tasks to processors is the key problem in designing a parallel algorithm.
Load balancing is a proxy goal for maximizing the speedup, whose reciprocal is the
fraction of the best possible serial computation time. Let T*(s) be the best time it takes
to solve a problem in some class of size s on a serial computer. (The "size" is frequently
taken to mean the number of variables, but it could account for other data values.) Let
Tp(s) be the time it takes a parallel algorithm to solve the same problem with p
processors. Then,

* ()() .
()p

p

T sSpeedup S s
T s

= = (9)

The best one can hope for is Sp(s) = p — equivalently, Tp(s) = T*(s)/p. This occurs if the
best serial algorithm can have its computations decomposed perfectly into p parts, each
taking the same amount of time. This could never be fully achieved, even with perfect
load balancing, due to message passing that is needed − that is, the information
produced by a processor must be communicated to at least one other processor.

The speedup of the dynamic programming parallelization is nearly linear. We have

*

*
(,)(,) ,

(,) (,)
p

T n bS n b
T n k M n k

=
+

 (10)

where M(n, k) is the communication time for n variables and k states. The size is given
as the number of variables (n) and the number of states (b), but we can consider the cost
per iteration that is, divide by n, since both algorithms perform n iterations. Then,

()(,) .
() ()p

kpS n kp
k k
τ

τ μ
=

+
 (11)

Further, each state requires a simple comparison of two values plus a storage of the
result, so τ(kp) = pτ (k). Substituting this into the above expression simplifies the
speedup, which is now independent of the number of variables:

(,) ,
()1
()

p
pS n b

k
k

μ
τ

=
+

 (12)

The speedup depends on the communication time relative to the computation time,
which is the ratio: ()

()
k
k

μ
τ

. We can see that ()K kτ α≈ for some constant α, but μ(k)

could be O(k) or O(log k), depending upon the architecture. A worst case has

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

(,)pS n kp pγ≈ for some constant, γ, which is still very good for large state values.
Doubling the number of processors doubles the speedup. The more favorable case is
when μ (k) = O(log k), for then limk→∞ Sp(n, kp) → p. Currently, one of the most active
places for such research is Sandia National Laboratories, with the ASCI red machine
that consists of more than 9000 tightly-coupled Intel processors.

They have an object-oriented Parallel Integer and Combinatorial Optimization code,
called PICO. Despite its title, PICO is a framework designed for general parallel branch
and bound, including nonlinear programs with continuous-valued variables. While there
have been some efforts to use parallel algorithms for hard problems, this is still a
frontier with many design decisions and experiments ahead. One class of algorithms
that have a natural decomposition to balance the load among the processors is the class
of stochastic, population-based, evolutionary algorithms.

 Some classes of hard nonlinear problems, such as in design optimization, involve
expensive functional evaluations. Often, f (x) is the solution to a differential equation or
a simulation, where x is a vector of design parameters. Although x is not large, obtaining
f (x) can take hours. Parallel algorithms are being developed for such problems, some
with a speedup on the order of p .

-
-
-

TO ACCESS ALL THE 23 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Bibliography

Ashford R.W. and Daniel R.C. (1986). LP-MODEL: XPRESS-LP's model builder. IMA Journal of
Mathematics in Management 1(163), 176. [Downloads are available at <http:// www.dash.co.uk.>]

Bentley P.J. ed. (1992, 1999). Evolutionary Design by Computers, 446 pp. San Francisco, CA: Morgan
Kaufman. [This is a basic reference for evolutionary algorithms/programming.]

Bertsekas D.P. and Tsitsiklis J.N. (1989). Parallel and Distributed Computation, 715 pp. Englewood
Cliffs, NJ: Prentice-Hall. [This presents the fundamentals of parallel algorithms, with special attention to
optimization.]

Chandru V. and Hooker J.N. (1953, 1999). Optimization Methods for Logical Inference, 365 pp. New
York: John Wiley & Sons. [This organizes the developments in applying integer programming to the sort
of logical inference done in artificial intelligence. Emphasis is given to the authors' work during the past
decade.]

Chinneck J.W. (1997). Computer codes for the analysis of infeasible linear programs. Journal of
Operational Research Society 47(1), 61-72. [This describes the author's development of computing IISs
in various optimization programs.]

Chinneck J.W. (1997). Feasibility and viability. Advances in Sensitivity Analysis and Parametric
Programming, (ed. T. Gal and Greenberg H.J.), pp. 14-1-14-41, Boston, MA: Kluwer Academic
Publishers. [This surveys the state-of-the-art in practical methods for helping an analyst understand why a

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-05-01-06

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

problem is infeasible, including non-linear programs. This addresses the related question of whether some
variables must be zero in every feasible solution.]

Chinneck J.W. Analyzing mathematical programs using MProbe. Annals of Operations Research, To
appear. Downloads are available at <http://www.sce.carleton.ca/faculty/chinneck/mprobe.html>. [This
applies to any mathematical program, but its main use is to provide shape information for nonlinear
functions. It probes AMPL source code and uses a sampling technique.]

Chinneck J.W. and Greenberg H.J. (1999). Intelligent mathematical programming software: Past, present,
and future. Canadian Operations Research Society Bulletin 33(2), 14-28. Also appeared in INFORMS
Computing Society Newsletter 20(1), 1-9, 1999. [This surveys optimization software that is intelligent in
its ability to help users formulate and analyze mathematical programs and generally manage the process
of doing so.]

Crescenzi P. and Kann V., ed.. (2000). A compendium of NP optimization problems.
<http://www.nada.kth.se/~viggo/problemlist/compendium.html>. [The editors maintain this site, giving
latest bounds and time complexity of approximation algorithms for NP-hard problems.]

Dutta A., Siegel H.J., and Whinston A.B.. (1983). On the application of parallel architectures to a class of
operations research problems. R.A.I.R.O. Recherche opérationanelle/Operations Research 17(4),317-341.
[This is one of the first parallel algorithms for linear programming. It applies to Dantzig-Wolfe
decomposition.]

Eckstein J., Hart W.E., and Phillips C.A. (2000). PICO: An object-oriented framework for parallel
branch and bound. Research report, Albuquerque, NM: Sandia National Laboratories. Also available as a
RUTCOR technical report. [This is a primer for the entitled object-oriented system where the user
supplies the classes for a particular problem and algorithm.]

Fourer R. (1983). Modeling languages versus matrix generators for linear programming. ACM
Transactions On Mathematical Software 9, 143-183. [This was an early description that clarified the
entitled distinction.]

Fourer R. (1996). Software for optimization: A buyer's guide, Parts 1 & 2. INFORMS Computing Society
Newsletter 17(1, 2). [This gives a broad view of what is available in all areas of optimization software.]

Glover F. and Laguna M. (1997). Tabu Search, 382 pp. Boston, MA: Kluwer Academic Publishers. [This
is the basic book about Tabu Search, written by its pioneers.]

Greenberg H.J. (1993) A Computer-Assisted Analysis System for Mathematical Programming Models and
Solutions: A User's Guide for ANALYZE. Boston, MA: Kluwer Academic Publishers. Downloads are
available at <http://www.cudenver.edu/~hgreenbe/imps/software.html>. [This describes and illustrates the
ANALYZE software system, which is part of the author's intelligent mathematical programming system.]

Greenberg H.J. (1994). Syntax-directed report writing in linear programming. European Journal of
Operational Research 72(2), 300-311 [This shows how the rules of composition the syntax of a model
can be used to drive the report writing process, including interactive query.]

Greenberg H.J. (1996). A bibliography for the development of an intelligent mathematical programming
system. Annals of Operations Research 65, 55-90. Online versions are available at:
<http://www.cudenver.edu/~hgreenbe/imps/impsbib/impsbib.html> and
<http://orcs.bus.okstate.edu/itorms>. [This gives hundreds of citation from early works through 1996.]

Greenberg H.J.(1996-2000). Mathematical Programming Glossary. <http://www.
cudenver.edu/~hgreenbe/glossary/>. [This is an ongoing glossary with about 700 entries and
supplements.]

Greenberg H.J. and Maybee J.S. ed. (1981). Computer-Assisted Analysis and Model Simplification, 522
pp. New York: Academic Press. [This introduced computer-assisted analysis as a formal foundation for
what evolved into an intelligent aid.]

Greenberg H.J. and Murphy F.H. (1991). Approaches to diagnosing infeasible linear programs. ORSA
Journal on Computing 3(3), 253-261. Note: the journal has been renamed INFORMS Journal on
Computing. [This describes the main approaches to the entitled problem, pointing out that Diagnosis =
Isolation + Explanation.]

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

Greenberg H.J. and Murphy F.H. (1992). A comparison of mathematical programming modeling systems.
Annals of Operations Research 38,177-238. [This uses specific examples to compare and contrast three
types of systems: process, algebraic and schematic.]

Greenberg H.J. and Murphy F.H. (1995). Views of mathematical programming models and their
instances. Decision Support Systems 13(1), 3-34. [This shows many ways to view optimization models,
with focus on LP. A central data structure is proposed to enable the computer to produce any view that
best meets the cognitive skill of the user.]

Heath M.T., Ranade A., and Schreiber R.S. ed. (1999). Algorithms for Parallel Processing. New York:
Springer. [This is a modern account, with a variety of subjects by different authors.]

Hochbaum D.S., ed. (1997). Approximation Algorithms for NP-Hard Problems. Boston, MA: PWS
Publishing Co. [This is the fundamental reference to learn about approximation algorithms and their
application to optimization problems.]

Hoffman K.L. Combinatorial optimization: Current successes and directions for the future. Journal of
Computational and Applied Mathematics, (In Press). [This gives perceptive insights about the importance
of modeling combinatorial optimization problems. It was also a keynote talk at the 1999 SIOPT meeting.]

Hooker J. (2000). Logic-Based Methods for Optimization: Combining Optimization and Constraint
Satisfaction. New York: John Wiley & Sons. [This combines the strengths of the entitled topics into a
coherent theory of problem expression and algorithm design.]

Jones C.V. (1995). Visualization and Optimization. Boston, MA: Kluwer Academic Publishers,. An
online version is at <http://www.chesapeake2.com/cvj/itorms/>. [This is a complete compendium of the
many visualizations that have been developed, including many by the author.]

McAloon K. and Tretko C. (1995). Logic and Optimization. New York: John Wiley & Son. [This is an
important introduction, taking problem descriptions from the view of artificial intelligence, and solution
methodology from integer programming.]

McCarl B. (1996.). GMSCHK User Documentation. <http://agrinet.tamu.edu/mccarl/gamssoft.htm>.
Lubbock, TX: Texas A&M University. [This is one-of-a-kind software that applies directly to GAMS
source code.]

Nemhauser G.L., Savelsbergh M.W.P., and Sigismondi G.C. (1994). MINTO, A Mixed INTeger
Optimizer. Operations Research Letters 15, 47-58. Downloads available at <http:
//akula.isye.gatech.edu/~mwps/projects/minto.html>. [This is an object-oriented system where the user
supplies the classes for a particular problem and algorithm.]

Orchard-Hays W. (1978). History of mathematical programming systems. Design and Implementation of
Optimization Software, (ed. H.J. Greenberg) 551 pp., The Netherlands: Alphen aan den Rijn : Sijthoff &
Noordhoff. [This gives the early history of mathematical programming and how it was intertwined with
the history of computer science during the years 1950-75.]

Pardalos P.M., Resende M.G.C., and Ramakrishnan K.G. ed. (1995). Parallel Processing of Discrete
Optimization Problems, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 22.
Providence, RI: American Mathematical Society. [This has an important collection of papers and an
insightful introduction.]

Robbins T. (1970). Antenna Design. Doctoral Thesis, Southern Methodist University, Dallas, TX. [This
was an early example of applying optimization to a very difficult objective, requiring significant
computer time for each evaluation.]

Rumelhart D.E. and McClelland J.L. ed. (1986). Parallel Distributed Processing, Explorations in the
Microstructure of Cognition, Vol. 1: Foundations. Cambridge, MA: MIT Press, [This was a very inspiring
book that helped to create major research efforts in neural network computers.]

Rutherford T. (1999). Some GAMS Programming Utilities. <http://nash.
colorado.edu/tomruth/inclib/tools.htm>. Boulder, CO: University of Colorado. [This is a useful suite of
tools, including interfaces with building output tables.]

Sowa J.F. (1984). Conceptual Information Processing, 374 pp. Amsterdam; New York: American
Elsevier. [This presented new concepts connecting language and intelligence. It led to new

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. I - The Role of Software in Optimization and Operations Research -
Harvey J. Greenberg

©Encyclopedia of Life Support Systems (EOLSS)

implementations of natural language processing.]

Spedicato E. ed. (1994). Algorithms for Continuous Optimization: The State of the Art. NATO ASI
Series, 565 pp. Dordrecht, The Netherlands: Kluwer Academic Publishers. [This has an excellent
collection of papers, focused on numerical methods to solve nonlinear programs.]

Stasko J.T., Dominque J.B., Brown M.H., and Price B.A., ed. (1998). Software Visualization;
Programming as a Multimedia Experience, 562 pp. Cambridge, MA: MIT Press. [This is a general book
on visualization that includes algorithm animation.]

Thienel S. (1995). ABACUS A Branch-And-CUt System. Doctoral Thesis, Universität zu Köln, Germany.
More information is available at <http://www.informatik.uni-koeln.de/ls_juenger/ projects/abacus/>.
[This is an object-oriented system where the user supplies the classes for a particular problem and
algorithm.]

Vanderplaats G. (1995). DOT Users Manual. Colorado Springs, CO: Vanderplaats Research and
Development, Inc. Downloads available at <http://www.vrand.com>. [This describes a Design
Optimization System, which addresses problems that are hard because the objective function requires a
significant amount of time for each evaluation. Generally, f (x) is the numerical solution to a PDE, where
x is a vector of design parameters.]

Waren A.D., Hung M.S., and Lasdon L.S. (1987). The status of nonlinear programming software: An
update. Operations Research 35(4), 489-503. [One of the significant advances addressed in this survey is
the emergence of PCs, making computer storage space no longer an issue, as it had been.]

Wirth N. (1976). Algorithms + Data Structures = Programs, 366 pp. Englewood Cliffs, N.J.: Prentice-
Hall. [This is a classic book about Algorithms + Data Structures = Programs.]

Biographical Sketch

Harvey Greenberg is Professor of Mathematics at the University of Colorado at Denver. After receiving
his Ph.D. in Operations Research from The Johns Hopkins University in 1968, he joined the Faculty of
Computer Science and Operations Research at Southern Methodist University. Dr. Greenberg has
pioneered the interfaces between operations research and computer science since that time. He was a
founder of what is now the INFORMS Computing Society, having served as its Chairman twice, and he
was the founding Editor of the INFORMS Journal of Computing. While at the U.S. Department of
Energy, 1976-83, Dr. Greenberg developed Computer Assisted Analysis (CAA), dealing with advanced
analysis techniques, including debugging scenarios that might be infeasible or anomalous. Shortly after
joining CU-Denver in 1983, he formed a Consortium to develop an Intelligent Mathematical
Programming System, which extended CAA in breadth and depth. During that time, the project generated
several software systems and about 50 papers. One of the systems, ANALYZE, was recognized with the
first “ORSA/CSTS Award for Excellence in the Interfaces Between Operations Research and Computer
Science.” The system is still used today, and it was a major part of Dr. Greenberg’s plenary talk at the
Canadian Operational Research Society, when he accepted their Harold Lardner Prize for having
“achieved international distinction in Operational Research.” Since 1996, Dr. Greenberg has been an
active developer of web materials to support teaching. In addition to his own site, which contains the
Mathematical Programming Glossary, he developed a site as a service to the Mathematics Department,
called “Using the Web to Teach Mathematics.” Most recently, Dr. Greenberg established a collaborative
relationship with Sandia National Laboratories, helping to develop parallel algorithms for NP-hard
problems, notably in computational biology, such as protein folding. Dr. Greenberg has published 104
papers and four books; he has (co)edited seven additional books or proceedings. He serves on six editorial
boards, and has been Guest Editor for the Annals of Mathematics and Artificial Research on such topics
as “Reasoning about Mathematical Models” and “Representations of Uncertainty”.

