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Summary  
 
Solution techniques for combinatorial optimization and integer programming problems 
are core disciplines in operations research with contributions of mathematicians as well 
as computer scientists and economists. This article surveys the state of the art in solving 
such problems to optimality. 
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1. Introduction 
 
Combinatorial optimization and integer programming is concerned with finding optimum 
solutions for optimization problems that involve yes/no decisions or determining 
optimum levels of discrete quantities. Research in solution techniques and corresponding 
computer software originated in the fifties and has been flourishing especially in the last 
decade. Our overview of the current state of the art is organized as follows.  
 
In Section 2, we introduce a few illuminating example problems. We also generalize the 
generic models that are the subject of this article. In Section 3, we sketch the 
mathematical foundations of today’s solution techniques. Section 4 deals with the most 
important algorithmic approaches. Section 5 concludes our exposition with general 
remarks on the availability of these techniques as computer software. 
 
2. Modeling 
 
2.1. Example Applications 
 
Many of the most well-known operations research problems can be formulated as (mixed) 
integer linear programs. Before both generic (mixed) integer programming models and 
generic combinatorial optimization models are introduced, a few examples are 
considered.  
 
In the assignment problem (AP), persons must be assigned to jobs, say, n persons to n jobs. 
If pij denotes the level of proficiency person i possesses for job j, the task is to find an 
assignment that maximizes the total proficiency. Let the unknown xij be either 1 or 0 if 
person i is assigned to job j or not, respectively. Then the problem can be written as 
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The equations make sure that each person is assigned to exactly one job and each job to 
exactly one person. 
 
For a more compact formulation of the assignment problem (and some of the subsequent 
example problems) it is convenient to introduce undirected graphs G = (V, E) with a finite 
node set V and edge set E ⊆ {{u, w} | u, w ∈ V, u ≠ w}. Two edges are adjacent if they 
share a common node. The complete bipartite graph Kn,n is the graph Kn,n = (V, E) with 
node set V = U ∪ W , where |U| = n, |W| = n, U ∩ W = Ø, and edge set E = {{u, w} | u ∈ 
U, w ∈ W}. Let E  denote the real vector space of dimension |E| where the components 
are indexed by the elements of E. For a set F ⊆ E its characteristic vector xF ∈ E  is 
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defined by setting F
ex = 1, if e ∈ F , and F

ex = 0, otherwise. An assignment then is a set of 
n pairwise nonadjacent edges of Kn,n and the xij become its characteristic vector.  
 
For a graph G = (V, E) and a node set W ⊆ V let δ(W ) := {{u, w} ∈ E | |{u, w}∩W | = 1} 
denote the cut induced by W , i.e. the edges with one endnode in W and the other in V \ W , 
and let δ(v) be a shorthand for δ({v}). For an edge set F ⊆ E and variables xe (e ∈ E), let 
x(F ) := ∑ e∈F xe. Furthermore, for a, b ∈ n , let ab := 1

n
i=∑ aibi denote the inner product 

of a and b. Then the assignment problem can equivalently be written as 
 

 
max  
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The related perfect matching problem (PMP) arises if one wants to find an optimum 
pairing of an even number 2n of items where each pairing of i and j induces a profit pij. 
E.g., assigning students to double rooms in a dormitory is such a task where there is no 
bipartition like in the assignment problem. In graph theoretic terms, the problem is to 
determine n pairwise nonadjacent edges in a complete graph K2n = (V, E) where |V | = 2n 
and E = {{u, w} | u, w ∈ V, u ≠ w}, with edge weights pij. It can be modeled just like (1) 
with an underlying complete graph K2n instead of a complete bipartite graph Kn,n.  
 
A traveling salesman, starting in his home city, must visit each of additional n − 1 cities 
exactly once and return to his home. If dij denotes the distance between towns i and j 
(where dij = dji), one of his problems, the traveling salesman problem (TSP), consists of 
choosing a tour of minimum distance traveled.  
 
The problem can be modeled on a complete graph with edges corresponding to the direct 
connections between two cities weighted according to the distances. Variables xij ∈ {0, 1} 
are introduced with the interpretation that xij = 1 if the salesman uses the edge between i 
and j and xij = 0 otherwise. Using the notation E(W ) = {{i, j} | i ∈ W, j ∈ W, i ≠ j }, the 
task can then be formulated as 
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The equations, called the degree constraints, express that in a tour, each city is touched by 
two direct connections; i.e. each node of the graph is incident with exactly two tour edges. 
The inequalities, called connectivity constraints, make sure that each nonempty subset of 
cities other than the whole set V is entered and left, thus excluding short cycles.  
 
Let N = {1, 2, …, n} be a set of potential fire station locations and M = {1, 2, …, m} a set 
of communities to be protected. For j ∈ N let Mj ⊆ M denote the set of communities that 
can be reached from location j in less than 10 minutes. Then, let cj denote the cost of 
building a fire station at location j. The task, to decide which stations to build at the least 
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possible cost so that all communities are protected, can be formulated as a set covering 
problem (SCP). 
 
Let B = (bij) ∈ m n×  be the matrix whose columns are the characteristic vectors of the sets 
Mj, j = 1, 2, …, n, i.e., bij ∈{0, 1} and bij = 1 if and only if community i can be protected 
by station j. If 1 denotes the vector of all 1’ s, then one has to solve the following problem. 
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{0,1} .n

x
Bx

x
≥

∈

1    (4) 

 
This type of problem belongs to the broad class of location problems.  
 
For the classical facility location problem (FLP), the input consists again of a set N = {1, 
2, …, n} of potential facilities and a set M = {1, 2, …, m} of clients with demands of 
certain goods supplied from the facilities.  
 
Facility j ∈ N, if built at cost cj, has a capacity of uj. The demand of client i ∈ M is bi. It 
costs hij to satisfy a unit of i’s demand from facility j. If xj ∈ {0, 1} encodes the decision of 
whether or not facility j is opened, and the continuous variable yij the quantity of i’s 
demand that it is satisfied from facility j, then the problem is the following. 
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The equations guarantee that all demands are satisfied and the inequalities ensure that 
only opened facilities are used and their capacities are not exceeded.  
 
A picture frame consists of two horizontal and two vertical parts. A picture frame 
manufacturer needs to cut m frame parts of lengths a1, a2, …, am from base rods of length 
L. For producing the parts, he wishes to determine a cutting strategy that minimizes the 
number of used base rods.  
 
Defining M and N as above, one can use analogous techniques as in (1)-(5) to formulate 
the problem. Let n ≤ m be an upper bound on the number of required base rods. Then, the 
so-called cutting stock problem (CSP) is the following. 
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In any feasible solution xj = 1 if and only if base rod j is used and yij = 1 if and only if part 
i is cut from base rod j.  
 
Two further basic problems are of interest in combinatorial optimization. Like the 
examples above, they can be formulated in terms of maximizing or minimizing a linear 
objective function subject to linear constraints and integrality conditions, yet such a 
description is of less interest here.  
 
A (v1, vk)−path in G = (V, E) is a set of edges {{v1, v2}, {v2, v3}, …, {vk−1, vk}} with 
distinct nodes v1, v2, …, vk ∈ V . A graph is connected if either |V | = 1 or for each pair of 
distinct nodes u, w ∈ V there exists a (u, w)-path in G. A cycle arises if all nodes are 
distinct except v1 = vk. 
 
Both problems are formulated for an undirected graph G with edge weights. In the 
minimum spanning tree problem (MSTP), the objective is to find a spanning tree, i.e., a 
connected subgraph with no cycles (i.e., with n − 1 edges) of minimum total weight. In 
the (u, w)-shortest path problem (ShPP), two vertices u, w ∈ V are given and the objective 
is to determine a (u, w)-path in G of minimum total weight. 
 
- 
- 
- 
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