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Summary 
 
Due to its widespread applications, graph and network optimization is an important 
subfield within the broad field of optimization. This article discusses some core graph 
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and network optimization problems. The article introduces the following fundamental 
graph and network optimization problems: the shortest path problem, the maximum 
flow problem, the minimum cost flow problem, and the minimum spanning tree 
problem. The article presents several applications of these problems that are intended to 
illustrate a range of problem contexts and to be suggestive of how network optimization 
problems arise in practice. 

The article also presents optimality conditions for each of the graph and network 
optimization problems considered. Optimality conditions characterize the optimal 
solutions of a problem. For the shortest path problem, there are distance-label based 
optimality conditions. For the maximum flow problem, there are augmenting path based 
optimality conditions. There are negative-cycle optimality conditions for the minimum 
cost flow problem, and path optimality conditions for the minimum spanning tree 
problem. These optimality conditions lead to generic algorithms to solve the 
corresponding network optimization problem. Several specific implementations of the 
generic algorithms are outlined with improved worst-case or empirical behavior. The 
bibliography section provides references to some useful books and seminal papers. 

1. Introduction 

Graphs and networks are all-pervasive. Electrical networks and power networks bring 
lighting and entertainment into our homes. Telephone networks permit us to 
communicate with each other almost effortlessly within our local communities and 
across regional and international borders. National highway systems, rail networks, and 
airline service networks provide us with the means to cross great geographical distances 
to accomplish our work, to see our loved ones, and to visit new places and enjoy new 
experiences. Manufacturing networks and distribution networks give us access to life’s 
essential foods and to consumer products. In each of these settings, one wishes to send 
some goods (vehicles, messages, electricity, or water) from one point to another, 
typically as efficiently as possible. The field of study concerning the optimal flow of 
goods on graphs and networks is known as graph and network optimization.  

The following sections study the following fundamental graph and network 
optimization problems: the maximum flow problem, the shortest path problem, the 
minimum cost flow problem, and the minimum spanning tree problem. These problems 
are core problems in graph and network optimization and arise both as stand-alone 
models and as sub-problems in more complex problem settings. Graph and network 
optimization problems also arise in surprising ways in application areas that on the 
surface might not involve graphs and networks at all. Sometimes these applications are 
linked to a physical entity, and at other times they are not. Indeed, these various 
applications of graph and network optimization problems seem to be more widespread 
than are the applications of physical networks. The article describes several sample 
applications of each of the fundamental graph and network optimization problems. The 
article also presents optimality conditions for each of the graph and network 
optimization problems considered. Optimality conditions characterize the optimal 
solutions of a problem. These optimality conditions lead to generic algorithms to solve 
the corresponding network optimization problem. Several specific implementations of 
the generic algorithms are outlined with improved worst-case or empirical behavior.  
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The article is organized as follows. Section 2 presents graph notation and introduces 
worst-case complexity, which is the measure adopted in this article to judge the 
goodness of an algorithm. Section 3 studies the shortest path problem, and Section 4 the 
maximum flow problem. The minimum cost flow problem is studied in Section 5, and 
the minimum spanning tree problem in Section 6. 

2. Preliminaries 

This section introduces some basic notation and definitions from graph theory as well as 
a mathematical programming formulation of the minimum cost flow problem, which is 
the core network flow problem that lies at the heart of graph and network optimization. 

Let G = (N, A) be a directed network defined by a set N of n nodes and a set A of m 
directed arcs. Each arc (i, j) ∈ A has an associated cost cij that denotes the cost per unit 
flow on that arc. It is assumed that the flow cost varies linearly with the amount of flow 
on the arc. Each arc (i, j) ∈ A also has an associated capacity uij that denotes the 
maximum amount that can flow on the arc, and a lower bound lij that denotes the 
minimum amount that must flow on the arc. Each node i ∈ N has an associated integer 
number b(i) representing its supply/demand. If b(i) > 0, then node i is a supply node; if 
b(i) < 0, then node i is a demand node; and if b(i) = 0, then node i is a transshipment 
node. The decision variables in the minimum cost flow problem are arc flows; xij 
represents the flow on an arc (i, j) ∈ A. The minimum cost flow problem is an 
optimization model formulated as follows: 

Minimize ∑(i,j)∈A cijxij (1) 

subject to 

ij ji
{j:(i,j) A} {j:(j,i) A}

x - x = b(i),
∈ ∈

∑ ∑  (2) 

0 ≤ xij ≤ uij, for all (i, j) ∈  A. (3) 

The data for this model satisfies the feasibility condition Σi∈N b(i) = 0 (that is, total 
supply must equal the total demand). The constraints in (2) are referred to as the mass 
balance constraints. The first term in this constraint represents the total outflow of a 
node (i.e., the flow emanating from the node) and the second term represents the total 
inflow of that node (i.e., the flow entering the node). The mass balance constraint states 
that the outflow minus inflow must equal the supply/demand of the node. The flow must 
also satisfy the lower bound and capacity constraints (3) which are referred to as the 
flow bound constraints. The flow bounds typically model physical capacities or 
restrictions imposed upon the flows’ operating ranges. In most applications, the lower 
bounds on arc flows are zero. 

Some basic definitions and notation are presented next. For i∈N, let A(i) = {(i,j)|(i,j) 
∈A} be the forward star of node i. A walk in G = (N, A) is a sequence of nodes and arcs 
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i1, (i1, i2), i2, (i2, i3), i3, … , (ir-1, ir), ir satisfying the property that either (ik, ik+1) ∈ A 
or (ik+1, ik) ∈ A. A walk might revisit nodes. A path is a walk whose nodes (and, hence, 
arcs) are distinct. For simplicity, a path is often referred to as a sequence of nodes i1, i2, 
i3, … , ir when its arcs are apparent from the problem context. A directed path is 
defined similarly. In this case, for any two consecutive nodes ik and ik+1 on the path, the 
path must contain the arc (ik, ik+1). A directed cycle is a directed path together with the 
arc (ir, i1), and a cycle is a path together with the arc (ir, i1) or (i1, ir). 

A graph G′ = (N′, A′) is a subgraph of G = (N, A) if N′ ⊆ N and A′ ⊆ A. A graph G′ is a 
spanning subgraph of G = (N, A) if N′ = N and A′ ⊆ A. Two nodes i and j are said to be 
connected if the graph contains at least one (undirected) path between these nodes; 
otherwise, they are disconnected. The connected subgraphs of a graph are called 
components. A tree is a connected graph that contains no cycle. A subgraph T is a 
spanning tree of G if T is a tree of G containing all of its nodes.  

The article focuses on designing graph and network algorithms that are guaranteed to be 
efficient in the sense that their worst-case running times⎯that is, the total number of 
multiplications, divisions, additions, subtractions, and comparisons in the worst-
case⎯grow slowly in some measure of the problem’s size. A graph algorithm is said to 
be an O(n3) algorithm, or has a worst-case complexity of O(n3), if it is possible to solve 
a graph problem using a number of computations that is asymptotically bounded by 
some constant times the term n3. An algorithm is said to be a polynomial-time algorithm 
if its worst-case running time is bounded by a polynomial function of the input size 
parameters. For a graph problem, the input size parameters are n, m, log C (the number 
of bits needed to specify the largest arc cost), and log U (the number of bits needed to 
specify the largest arc capacity). A graph algorithm is called a pseudopolynomial-time 
algorithm if its worst-case running time is bounded by a polynomial function of n, m, C, 
and U. For example, an algorithm with the worst-case complexity of O(nm log U) is a 
polynomial-time algorithm, but an algorithm with the worst-case complexity of O(nmU) 
is a pseudo-polynomial-time algorithm. For a thorough discussion of graph theoretic 
concepts see: Graph Theory and for a discussion of the computational complexity of 
algorithms see: Complexity Theory. 

3. Shortest Path Problem 

3.1. Introduction 

The shortest path problem is among the simplest network flow problems. This problem 
consists of finding a directed path of minimum cost (length) from a specified source 
node s to another specified sink node t in a directed network in which each arc (i, j) has 
an associated cost (or length) cij. The shortest path problem is a special case of the 
minimum cost flow problem. In the minimum cost flow formulation, if b(s) = 1, b(t) = –
1, and b(i) = 0 for all other nodes, then the optimal solution to the problem will send one 
unit of flow from node s to node t along the shortest path. This formulation assumes that 
there are no negative cost directed cycles, called negative cycles, in the network. 
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3.2. Applications 

Shortest path problems are alluring to both researchers and practitioners for several 
reasons: (i) they arise in practice in a wide variety of application settings when some 
material (for example, a computer data packet, a telephone call, or a vehicle) needs to be 
sent between two specified points in a network as quickly, as cheaply, or as reliably as 
possible; (ii) they are easy to solve efficiently; (iii) as the simplest network models, they 
capture many of the most salient core ingredients of network flows and so they provide 
both a benchmark and a point of departure for studying more complex network models; 
and (iv) they arise frequently as sub-problems when solving many combinatorial and 
network optimization problems. This section describes one problem, known as the 
equipment replacement problem, which may not seem to be related to shortest paths but 
can be transformed to a shortest path problem. 

A job shop must periodically replace its capital equipment because of machine wear. As 
a machine ages, it breaks down more frequently and so becomes more expensive to 
operate. Furthermore, as a machine ages, its salvage value decreases. Let cij denote the 
cost of buying a machine at the beginning of period i, plus the cost of operating the 
machine over the periods i, i + 1, ...., j - 1, minus the salvage cost of the machine at the 
beginning of period j. The equipment replacement problem attempts to obtain a 
replacement plan that minimizes the total cost of buying, selling, and operating the 
machine over a planning horizon of n years, assuming that the job shop must have at 
least one unit of this machine in service at all times. 

The equipment replacement problem is formulated as a shortest path problem as follows. 
Let G be a directed network on (n + 1) nodes numbered 1, 2, ... , n + 1; the nodes in this 
network correspond to various time periods. Node 1 corresponds to the beginning of 
time period 1, node 2 corresponds to the beginning of time period 2, and so on. Next, 
arcs (i, j) are added for every pair of nodes i and j such that j > i; the arc (i, j) as 
representing the strategy of buying the machine at the beginning of time period i and 
selling it at the beginning of time period j. The cost of the arc (i, j) is cij. It is easy to 
observe that every directed path from node 1 to node n+1 gives a buying and selling 
policy for the equipment replacement problem. Thus the minimum cost directed path 
from node 1 to node n+1 gives the optimal policy. 

3.3. Label-Correcting Algorithms 

Most shortest path algorithms proceed by assigning tentative distance labels to nodes at 
each step; the distance labels are estimates of (in particular, they are upper bounds on) 
the shortest path distances. Different algorithms vary in how they update the distance 
labels from step to step and how they “converge” toward the shortest path distances. 
Label-setting algorithms designate one label as permanent (optimal) at each iteration. In 
contrast, label-correcting algorithms consider all labels as temporary until the final step 
when they all become permanent. Another distinguishing feature of these approaches is 
the class of problems that they solve. Label-setting algorithms are applicable only to (i) 
shortest path problems defined on acyclic networks with arbitrary arc lengths; and (ii) 
shortest path problems with nonnegative arc lengths. The label-correcting algorithms are 
more general and apply to all classes of problems, including those with negative arc 
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lengths. The label-setting algorithms are, however, much more efficient in the sense of 
having much better worst-case complexity bounds. This section starts with a generic 
label-correcting algorithm, and derives two label-setting algorithms from the generic 
version. 

Label-correcting algorithms maintain a distance label d(j) for every node j ∈ N. At 
intermediate stages of computation, the distance label d(j) is an estimate of (an upper 
bound on) the shortest path distance from the source node s to node j. At termination, it 
is the shortest path distance. This section develops necessary and sufficient conditions 
for a set of distance labels to represent shortest path distances. Let d(j) for j ≠ s denote 
the length of a shortest path from the source node to the node j (one may set d(s) = 0). If 
the distance labels are shortest path distances, then they must satisfy the following 
necessary (optimality) conditions: 

d(j) ≤ d(i) + cij, for all (i, j) ∈ A. (4) 

These inequalities state that for every arc (i, j) in the network, the length of the shortest 
path to node j is no greater than the length of the shortest path to node i plus the length 
of the arc (i, j). If these conditions are not satisfied, then some arc (i, j) ∈ A must satisfy 
the condition d(j) > d(i) + cij; in this case, one could improve the length of the shortest 
path to node j by passing through node i, thereby contradicting the optimality of 
distance labels d(j). It can be shown that these conditions also are sufficient for 
optimality, in the sense that if each d(j) represents the length of some directed path from 
the source node to node j and this solution satisfies the conditions (2), then it must be 
optimal. Hence the following result: 

Theorem 1 (Shortest path optimality conditions). For every node j ∈ N, let d(j) 
denote the length of some directed path from the source node to node j. Then the 
numbers d(j) represent shortest path distances if and only if they satisfy the following 
shortest path optimality conditions:  

d(j) ≤ d(i) + cij for all (i, j) ∈ A. (5) 

We point out that the shortest path optimality conditions cannot be satisfied if the 
network contains a negative cycle. To see this, consider a directed cycle W. The 
optimality conditions can be rewritten as d(i) - d(j) + cij ≥ 0 for all (i, j) ∈ A.  
Adding these conditions for arcs in W yields ij(i,j) W c∈∑  ≥ 0. For any negative cycle W, 

the LHS of the preceding expression will be negative, which is impossible. 

The generic label-correcting algorithm maintains a set of distance labels d(.) at every 
stage. The label d(j) is either ∞, indicating that a directed path from the source to node j 
is yet to be discovered, or it is the length of some directed path from the source to node j. 
Each node j also maintains a predecessor index, pred(j), which records the node prior to 
node j in the current directed path of length d(j). At termination, the predecessor indices 
allow us to trace the shortest path from the source node back to node j. The generic 
label-correcting algorithm is a general procedure for successively updating the distance 
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labels until they satisfy the shortest path optimality conditions (3). In the presence of a 
negative cycle, the generic label-correcting algorithm will run indefinitely since there 
will always be some arc violating its optimality condition. A formal description of the 
generic label-correcting algorithm is presented next.  

algorithm label-correcting; 
begin 
 d(s) := 0 and pred(s) : = 0; 
 d(j) := ∞ for each j ∈ N – {s}; 
 while some arc (i, j) satisfies d(j) > d(i) + cij do 
 begin 
  d(j) := d(i) + cij; 
  pred(j) := i; 
 end; 
end; 

Figure 1 illustrates three iterations of the generic label-correcting algorithm. The 
algorithm selects the arcs (1, 3), (1, 2) and (2, 4), and the distance labels obtained are 
shown in Figures 1(b) through 1(c).  

 
Figure 1. Illustrating the generic label-correcting algorithm 
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The algorithm terminates in a finite number of iterations. This result is easily proved 
when the data are integral. Observe that each d(j) is bounded from above by nC 
(because a path contains at most n-1 arcs, each of length at most C), and the shortest 
path length is bounded from below by -nC. Therefore, the algorithm updates any label 
d(j) at most 2nC times because each update of d(j) decreases it by at least one unit. 
Consequently, the total number of distance label updates is at most 2n2C. Each iteration 
updates a distance label, so the algorithm performs O(n2C) iterations. This bound holds 
if the network has no negative cycle. In the presence of negative cycles, the algorithm 
will run indefinitely and some distance will eventually go below –2nC. Using this test 
we can determine whether the network contains a negative cycle or not.  

- 
- 
- 
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