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Summary 
 
The area of routing is one of the most vital areas within Optimization and Operations 
Research. From a theoretical/mathematical programming point of view the concept of 
“routing” means basically to determine an optimal set of cycles within a graph or 
network. In practice routing problems arise in distribution and transportation planning; 
in service planning, as for instance waste collection; and in operations management or 
manufacturing, when optimal sequences in automatic drilling and plotting have to be 
determined. In this article we give an overview of the main developments in 
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deterministic routing. Here a distinction is made between node-oriented problems and 
arc-oriented problems. The term “arc routing” refers to problems where the service 
activity is associated with the arcs of the graph, while “node routing” refers to problems 
where the service is associated with the nodes of the graph. In this article we introduce 
standard models and outline related exact and “approximative” approaches for problems 
within both classes of routing. 
 
1. Introduction 
 
The area of routing is one of the most vital areas within Optimization and Operations 
Research. From a theoretical/mathematical programming point of view the concept of 
“routing” means basically to determine an optimal set of cycles within a graph or 
network. Here different configurations of the underlying graphical structure, different 
objectives as well as different constraints have lead to a great variety of challenging and 
well-studied standard optimization problems. Under practical aspects routing problems 
include transportation planning problems for the delivery of goods from a depot to a set 
of customer locations, like the delivery of newspapers or the scheduling of fuel 
deliveries, the routing of waste collection vehicles, and so on, as well as optimization 
problems in manufacturing, as for instance to determine optimal sequences in automatic 
drilling and plotting. The theories, models, and algorithms that have been developed are 
implemented on an operational level for daily use as well as on a strategic level when 
service systems - like communication or transportation networks - are designed. 

The transportation sector has always been of significant economic importance. In every 
economy transportation accounts for a substantial percentage of the gross national 
product. Under the phenomenon of globalization, deregulation, and time-based 
competition the pressure for cost reduction and productivity improvement is ever-
increasing and a must for private companies as well as for the economy as a whole. 
Under aspects of increasing consumption of natural resources and increasing pollution 
through transportation the problem of “optimal routing” gets an ecological dimension 
and objective. 

Developments in this problem domain have always been among the major success 
stories of Optimization and Operations Research, and due to an increasing need for 
better decision support, routing has found a renewed interest in the last decade leading 
to significant progress in theory, models, algorithms, and routing software. 

From a mathematical as well as from a practical point of view, we can distinguish two 
classes of routing problems. The term “arc routing” refers to problems where the service 
activity is associated with the arcs of the graph - as for instance when modeling the 
snowplowing activities in street networks. On the other hand the term “node routing” 
refers to problems where the service is associated with the nodes of the graph - as for 
instance when modeling the daily delivery of newspapers to newspaper stands. Here the 
arcs deliver the basis for paths connecting the locations to be served. Note that the 
distinction between these concepts is a matter of modeling and not an objective attribute 
of the planning situation. Within optimization these two models are studied separately 
due to their intrinsic combinatorial properties and we follow this separation here. Within 
the literature as well as in practice, node routing has always played a dominant role, and 
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it is only recently that arc routing has found similar attention. 

In the following we briefly introduce the mathematical notation used in this article. A 
graph G = (V, E ∪ A) is specified by a node set V = {1,...,n}, undirected edges E, and 
directed arcs A. G is called directed if E is empty, undirected if A is empty, and mixed if 
both E and A are nonempty. In a directed graph, arc (i, j) is directed from node i to node 
j. The undirected edge e between nodes i and j is denoted by e = e (i, j) without regard to 
the order of i and j. We assume that a cost ci,j ≥ 0 is associated with all edges e(i, j) ∈ E 
and arcs (i, j) ∈ A. This definition does not allow for multiple edges/arcs. A graphical 
structure with several edges/arcs between nodes is called a multigraph. An undirected 
graph G is called a complete graph if every pair of nodes is met by an edge in E. 

Given a node i of a mixed graph G = (V, E ∪ A) let ( ) { | ( , ) }i j V i j Aδ + = ∈ ∈ and 

( ) { | ( , ) } i j V j i Aδ − = ∈ ∈ and define ( ) | ( ) |  d i iδ+ += the out-degree of node i, and 

( ) | ( ) |d i iδ− −=  the in-degree of node i in G, respectively. Similarly, let 
( ) { | ( , ) } and ( ) | ( ) |i j V e i j E d i iδ δ= ∈ ∈ =  the degree of node i in G. For a subset S ⊆ 

V we define γ(S) as the set of edges/arcs in G with both end nodes in S and δ(S) as the 
set of edges/arcs in G with exactly one end node in S. For a subset F E⊆ we define 

( ) : e
e F

c F c
∈

= ∑ . 

A path in a graph G = (V, E ∪ A) is a sequence 1 1 2 2 1( , , , , , , )p pi e i e e i +… of nodes and 
edges/arcs such that ek is either an arc directed from ik to ik+1 or an edge joining these 
nodes. Two distinct nodes i and j of a graph G are said to be connected if there exists a 
path in G from i to j. A graph G is called a connected graph if all nodes are connected. 
Note that in the sequel of this article on routing problems we assume all graphs to be 
connected, since for unconnected graphs the routing problem decomposes into smaller 
subproblems. A spanning tree S in G is a subset of the edges such that |S| = |V| – 1 and S 
does not contain a cycle (subtour) in G. From these properties it follows that the graph 
which is induced by S is connected and spans the set V. 

A tour, or a cycle, is a path such that 1 1 pi i += . This definition allows for multiple 
incidences of the same edge in a tour. A tour is called a Hamiltonian tour or a traveling 
salesman tour if it contains every node exactly once. It is called an Eulerian tour or an 
Euler tour if it contains every edge of G exactly once, and a postman tour if each edge 
occurs at least once in the tour. A graph allowing an Euler tour is called an Eulerian 
graph or an Euler graph. The length of a path or tour T is defined as the sum of the cost 
of the arcs and edges contained in T. 

The organization of this article is as follows. In Sections 2 and 3 we introduce the two 
fundamental routing problems: the Chinese postman problem and the traveling salesman 
problem. These problems represent already the essentials of the two different classes 
(i.e., they contain the core structures, motivate general algorithmic ideas, etc.) There is 
one striking difference between these standard problems: while the Chinese postman 
problem is efficiently solvable, the traveling salesman problem is NP-hard. This 
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difference vanishes for the general and more complicated arc routing problems and node 
routing problems, which are NP-hard in general. In Sections 4 and 5 we then discuss 
two more general routing problems: the vehicle routing problem and the capacitated arc 
routing problem. 

2. The Chinese Postman Problem 
 
The Chinese postman problem (CPP) is the fundamental arc routing problem. It is to 
find the minimum length postman tour in an undirected graph G. This problem was first 
solved in 1962 by Mei Ko Kwan, a Chinese mathematician. He considered this problem 
on the practical background of a postman delivering the daily mail for a certain district 
of streets - hence, the problem is referred to as the “Chinese” postman problem. In its 
basic form CPP has been defined on an undirected graph and in the following we refer 
to this problem as undirected postman problem (UPP). Later this problem was extended 
to directed and mixed graphs. Edmonds and Johnson - who related this problem to 
matching theory - published the first polynomial algorithm for UPP in 1973. 

2.1. The Undirected Postman Problem 

It is obvious that whenever there is an Eulerian tour in the graph, then this tour solves 
UPP. A necessary and sufficient condition for the existence of such a tour was already 
given in 1736 by Leonhard Euler: “For a graph to be Eulerian each node must be 
incident to an even number of edges.” It follows that if this condition is fulfilled, UPP is 
reduced to the problem of identifying and tracing an Eulerian tour. If the original graph 
does not satisfy this condition, some edges have to be traversed more than once by the 
postman; in other words, the graph has to be balanced (i.e., copies of certain edges have 
to be added). This leads to the formulation of the following mathematical program. 

Given a postman tour every edge of G is traversed at least once. So let 1 + te be the 
number of times that edge e is contained in the tour. Now we construct a (multi)graph 
G’ from G introducing te additional copies of edge e into G. Then the postman tour in G 
becomes an Eulerian tour in G’. Thus UPP can be reformulated as an “augmentation 
problem,” (i.e., the problem of determining the Eulerian supergraph of minimum cost) 
and this can be formulated as a mathematical program in the following way: 

Undirected postman problem (UPP) 

minimize subject toe e
e E

t c
∈

⋅∑  (1) 

 

( )
( 1) 0  mod  2  for  e

e v
t v V

δ∈
+ ≡ ∈∑   (2) 

 
0, integer for  ,et e E≥ ∈  (3) 

that is, find values te for e ∈ E such that after adding te copies of e, G is balanced (i.e., 
every node has even degree) and such that the sum of the cost of the additional copies is 
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minimized. 

Now if node v has an odd degree in G then an odd number of incident edges has to be 
added such that v gets even degree in G′. If node v is an even degree node in G, then an 
even number of incident edges or no incident edge has to be added, respectively. 
Therefore, the process of duplicating edges leads to a collection of paths starting and 
ending at odd degree vertices, and one has to decide which pairs of odd degree nodes 
are to be joined together by a path of duplicated edges. Note that in an undirected graph 
there is always an even number of nodes with odd degree. 

The optimal augmentation (i.e., the optimal set of paths) can be determined by solving a 
perfect matching problem on a related auxiliary graph. Here a perfect matching in a 
graph is a subset M of edges such that every node is met by exactly one edge from M. 
This leads to the following procedure: 

Undirected postman algorithm 

1. Determine for every pair i, j ∈ V of odd degree nodes in G the shortest path Pi,j 
joining these two nodes and define di,j to be the length of path Pi,j. 

2. Construct the complete graph ( , )G V E= whereV  denotes the set of all odd 
degree nodes in G and associate with the edge joining i and j inV  the cost di,j . 

3. Determine a perfect matching M of minimum cost in⎯G. 
4. Duplicate in G the edges of those paths Pi,j that correspond to the edges in the 

optimal perfect matching M to obtain an Eulerian (multi)graph G′. 
5. Identify and trace an Eulerian tour in G′. 

Steps 1 - 4 of the UPP algorithm can be implemented using a labeling technique that 
enables us to solve the shortest path and the matching problem simultaneously. 
Consequently, this labeling technique combines elements from shortest path 
computation and elements from matching algorithms. Then Step 5 requires one to 
construct a traversal in G′. This is a rather simple problem that can be solved by a 
straightforward list procedure. 

2.2. The Directed Postman Problem 

In the undirected postman problem the key idea is to add edges such that every node 
gets an even degree since when traversing a postman tour, one must be able to leave 
every node that the tour visits. In a directed graph, we have to obey the direction of arcs, 
and a necessary and sufficient condition for a directed graph to allow an Eulerian tour is 
that the number of arcs leading into a given node must equal the number of arcs directed 
out of that node. Again, if the original graph does not satisfy this condition, the graph 
has to be augmented (i.e., copies of certain arcs have to be added). Here, an optimal 
augmentation can be determined by solving a network flow problem on an auxiliary 
graph. 

For that purpose we compute the so-called imbalance b(i) = d – (i) – d + (i) for all nodes i 
in V and define decision variables xi,j as the number of copies of arc (i,j) to be added to 
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G. Then the optimal set of arcs to be added to make G an Eulerian graph can be 
determined by solving the following network flow problem: 

, ,
( , )

mimimize  subject toi j i j
i j A

c x
∈
∑

 (4) 

, ,
( ) ( )

 - ( ) for i j j i
j i j i

x x b i i V
δ δ+ −∈ ∈

= ∈∑ ∑  (5) 

 
, 0 and integer for  ( ) i jx i, j A≥ ∈ . (6) 

The optimal flow (i.e., the set of arcs with xi,j > 0) can be decomposed into a collection 
of paths from nodes with b(i) > 0 to nodes with b(i) < 0, and these arcs form the optimal 
augmentation. Introducing copies of the arcs of these paths, G is balanced with minimal 
cost. 

The network flow problem can be transformed into an equivalent classical 
transportation problem. For that purpose let { | ( ) 0} I i V b i= ∈ >  and 
 { | ( ) 0}J j V b j= ∈ <  and determine for each pair (i,j) with i∈I and j∈J the length di,j 
of the shortest path connecting i and j. Now, using these cost-values, solve the 
transportation problem with the set I as supply nodes with supply b(i) and the nodes in J 
as demand nodes with demand –b(i). For a discussion of the network flow problem and 
the classical transportation problem (see Fundamentals of Optimization and Operations 
Research and Graph and Network Optimization). 

2.3. The Mixed Postman Problem 

As long ago as 1962, Ford and Fulkerson proposed necessary and sufficient conditions 
for a mixed graph to be Eulerian. Here, every node has to be incident with an even 
number of arcs and edges, and for every nonempty subset S of V, the difference between 
the number of arcs from S to V\S and the number of arcs from V\S to S must be less than 
or equal to the number of edges between S and V\S. Yet verifying these conditions or 
solving the augmentation problem to balance the mixed graph appropriately is NP-hard. 
The augmentation or balancing problem can again be formulated as an integer 
programming problem in which the variables represent the number of copies of each arc 
or edge that must be added to make the graph Eulerian. These programs may then be 
solved by “branch & bound” or “branch & cut” approaches. Once the Eulerian 
supergraph has been determined the mixed graph can be transformed into an equivalent 
Eulerian directed graph and then any algorithm for the directed case can be applied to 
identify the postman tour. 

Due to the intrinsic complexity of the postman problem in mixed graphs, several 
heuristics have been developed, with the best-known heuristics having a worst-case 
ratio of 2. (For a discussion of performance criteria for heuristics, see Approximative 
Algorithms.) 

2.4. Some Variants of the Classical Postman Problem 
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Quite a number of variants of the classical postman problem/model have been proposed 
in literature. The “windy postman problem” consists of determining a least-cost 
postman tour of an undirected graph G = (V,E) with the cost of traversing an edge 
depending on the direction of the traversal (i.e., travel with or against the wind). Except 
for some cases which can be solved in polynomial time this problem is again NP-hard. 
In the “rural postman problem” we consider a graph G = (V, E ∪ A) and a set R ⊆ E ∪ A 
of so called required arcs and edges. Then we have to determine a traversal of minimal 
length that covers all the edges and arcs in R. In general the rural postman problem is 
NP-hard for undirected and directed as well as for mixed graphs. 
 
3. The Traveling Salesman Problem 
 
The traveling salesman problem (TSP) is one of the most celebrated problems in 
Operations Research in general and in combinatorial optimization, specifically. Here 
TSP, because of its simple conception on one side and its intrinsic algorithmic 
complexity on the other hand, plays the role of a standard reference: All major 
algorithmic techniques in combinatorial optimization, like polyhedral combinatorics, 
enumeration and relaxation techniques, and heuristic schemata, have been developed 
with the TSP as one of the motivating benchmark problems. The literature related to 
TSP is enormous, and development in the TSP domain mirrors the progress of 
combinatorial optimization in general. TSP has practical relevance as such, and occurs 
as a subproblem in several more complex routing problems. Except for a few special 
cases that are more or less academic, traveling salesman problems are hard. Note that 
the problem to determine whether a graph contains a Hamiltonian tour is NP-hard 
already. 

The generic traveling salesman problem is defined on a directed complete graph G = 
(V,A) and with every arc (i,j) is associated a nonnegative cost ci,j representing a distance, 
a travel cost, or a travel time. Then we want to find a tour of minimal cost that meets 
every node exactly once. If ci,j = cj,i for all i, j ∈ V the TSP is said to be a symmetric TSP. 
Another special case occurs if the triangle condition holds i.e., ci,j + cj,k ≥  ci,k for all 
triples i, j, k ∈ V. For the following discussion we define T as the set of all traveling 
salesman tours in G and zOPT as the length of the optimal traveling salesman tour in G. 

3.1. Mathematical Programming-Based Formulations and Algorithms 

3.1.1. The Asymmetric Case 

Assume a directed graph G = (V,A) with V = {1,...,n} and for every arc (i,j) ∈ E, let ci,j 
be the cost of the arc. Without loss of generality we can assume that G is a complete 
graph by defining ci,j to be sufficiently large for those (i,j) not contained in A. Define 
decision variables xi,j that take on the value 1 if the optimal tour includes the arc (i,j) and 
the value zero, otherwise. Then the traveling salesman problem can be formulated as 
follows: 

, ,
( , )

minimize subject toi j i j
i j A

c x
∈
∑  (7) 
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,
1

1 for i 1, 2, ,
n

i j
j

x n
=

= =∑ …  (8) 

 

,
1

1 for 1, 2, ,
n

i j
i

x j n
=

= =∑ …  (9) 

 
,

( , )
| | 1 for , 2 | | 2i j

i j S S
x S S V S n

∈ ×
≤ − ⊆ ≤ ≤ −∑  (10) 

 
, {0,1} for ,   1,..., ;  .i jx i j n i j∈ = ≠  (11) 

In this formulation, the so called degree constraints (8) and (9) ensure that for each 
node i there is exactly one arc leading into i and exactly one arc leaving i. Constraints 
(10) are called subtour elimination constraints, and together with the degree constraints 
they exclude (0,1)-solutions representing a set of disjoint cycles on subsets of V. When 
relaxing the subtour elimination constraints we obtain a linear assignment problem that 
can be solved rather efficiently. This assignment relaxation has been used in several 
branch & bound approaches for solving asymmetric TSP. (For a discussion of the 
assignment problem and the branch & bound approach see Fundamentals of 
Optimization and Operations Research, and Graph and Network Optimization.) 

- 
- 
- 
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