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Summary 

 
This paper gives an overview over basic mathematical settings used to tackle problems 
with an infinite number of free variables or constraints. 
 
1. Introduction 
 
Infinite-dimensional optimization problems are optimization problems where, in order 
to reach an optimal solution, one may either associate values to an infinite number of 
variables, or one has to take into account an infinite number of constraints, or both. 
Such problems occur naturally if the system to be optimized includes dependencies 
which vary continuously in time or space. Thus, all problems where one wants to 
minimize an energy functional which depends on continuously varying variables belong 
to this class. Moreover, all optimization problems which involve differential or integral 
equations are infinite-dimensional, at least at the outset. Even if one is really only 
interested in the behavior with respect to a finite number of variables, the infinite-
dimensional character of the underlying system often has implications whose 
understanding is crucial for the solution of the problem.  
 
Infinite-dimensional optimization problems first appeared several hundred years ago in 
the calculus of variations, when the differential calculus was extended to find not only 
several variables, but whole curves which are minimal with respect to some predefined 
goal. A famous example is the so-called brachistochrone problem first formulated by 
Galileo, where one wants to find a curve connecting two given points A and B, such that 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. III - Optimization in Infinite Dimensions - Martin Brokate 

©Encyclopedia of Life Support Systems (EOLSS) 

a frictionless mass moving from A to B under the influence of gravity reaches B in 
minimal time. Soon it was also discovered that the laws of nature often can be expressed 
in form of an optimization problem.  
 
With the advent of the area of industrialization, man-made systems appeared in large 
numbers and complex forms, and optimization became urgent for economic reasons. 
However, since optimization problems (in particular, practical ones) on average have a 
more complicated structure than a system of equations, they are less accessible to 
solution by pencil and paper. Therefore, the invention of computers was a crucial 
ingredient for the widespread development of theory and algorithms in optimization. 
This is true in particular for infinite-dimensional optimization, which deals with 
problems where already the evaluation of the cost functional for a single instance of the 
free variables may involve the solution of a complicated system of differential 
equations. Indeed the progress of mathematics and computer science in the construction 
of hardware, algorithms and software together led to the gain of many orders of 
magnitude in the speed of solving optimization problems. For infinite-dimensional 
problems, this meant that not only larger instances of previously solved problems, but 
also completely new classes of problems became tractable. During the ’60s, the 
achievements to solve nonlinear finite-dimensional optimization problems could be 
combined with the solution techniques for ordinary differential equations, and optimal 
control problems for ordinary differential equations could be treated successfully in 
practically relevant situations such as trajectory optimization in aircraft and space 
vehicle flight. At that time, for instance, the solution of optimal control problems for 
partial differential equations was almost completely out of question, mainly because of 
the lack of computational and algorithmic power. This situation has changed 
dramatically during the last 20 years, so that the solution of optimal control problems 
has become a feasible option for a lot of situations described by partial differential 
equations. On the other hand, the solution of the dynamic programming problem in 
continuous time, that is, the solution of the Hamilton-Jacobi-Bellman equation, remains 
elusive except for simple academic problems. 
 
A continuous progress also has taken place with respect to the areas where such 
algorithms are applied. Infinite-dimensional optimization nowadays not only pervades 
the engineering disciplines to a large extent, but has also found a firm footing in life 
sciences and economics. In particular, a large variety of infinite-dimensional problems 
has been studied in the subarea of population dynamics of species of all kind. As 
dynamical systems and continuum mechanics modeling enters the medical sciences, it is 
a safe prediction that optimization and optimal control will play an increasing role not 
only in the engineering of the relevant technology, but also in bioengineering explicitly 
focused on processes which take place within living tissue.  
 
It is not the intention of this article to describe those applications in detail. Rather, it 
focuses on the basic principles of optimization as they appear in infinite-dimensional 
problems. The examples given are as simple as possible in order to illustrate a certain 
feature. In Section 2, we will present an abstract framework and exhibit some additional 
difficulties encountered in infinite-dimensional problems. Sections 3 and 4 are devoted 
to duality in convex problems and optimality conditions in nonconvex problems. We 
retain the general formulation but will not discuss in detail the mathematical 
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ramifications involved in a complete formal solution. Using the language and notions of 
functional analysis, this can be done of course, and the interested reader should consult 
the monographs listed in the bibliography. In Sections 5 and 6 we present some typical 
basic problems of optimal control and of the calculus of variations, which form the main 
thrust of infinite-dimensional optimization. Section 7 is devoted to nonsmooth 
problems, in which we do not have any or enough derivatives available. Section 8 
discusses optimal shape design problems, where the shape itself of the underlying 
domain of the system constitutes the free variables for optimization.  
 
To actually solve infinite-dimensional problems on the computer, we of course have to 
reduce them to finite-dimensional form by discretization. The solution of the latter is not 
discussed in this article, we refer to the corresponding chapters and, again, to the 
bibliography. 
 
- 
- 
- 
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