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Summary 
 
Assuming the existence of a classical solution for a variational integral one derives a 
system of second order differential equations, the Euler-Lagrange equations, which 
necessarily have to be satisfied. To ensure the existence of, for example, a minimizer one 
uses the direct method of the calculus of variations. This produces a generalized solution 
and therefore the question of regularity arises. Here, the convexity of the variational 
integral is an important feature. One method to tackle non-convex problems is the theory 
of Γ-convergence. Topological conditions enter when investigating unstable critical 
points. 
 
1. Introduction 
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As Giaquinta and Hildebrandt write in the introduction to the first volume of their 
treatise: "The Calculus of Variations is the art to find optimal solutions and to describe 
their essential properties." Examples from daily life are: which object has some property 
to a highest or lowest degree, or what is the optimal strategy to reach some goal. The 
Isoperimetric Problem, already considered in antiquity, is one such question: Among all 
possible closed curves of a given length, find those for which the area of the enclosed 
inner region is maximal. A property shared by such optimum problems consists in the fact 
that, usually, they are easy to formulate and to understand, but much less easy to solve. 
 
The principle of economy of means: "What you can do, you can do simply" is an idea that 
dominates many of our everyday actions as well as the most sophisticated inventions or 
scientific theories. Therefore, it should come as no surprise that this idea was extended to 
the area of natural phenomena. As Newton wrote in his Principia: "Nature does nothing 
in vain, and more is in vain when less will serve; for Nature is pleased with simplicity and 
affects not the pomp of superfluous causes." Similarly, in the first treatise on the Calculus 
of Variations, his Methodus inveniendi from 1744, Euler wrote: "Because the shape of the 
whole universe is most perfect and, in fact, designed by the wisest creator, nothing in all 
of the world will occur in which no maximum or minimum rule is somehow shining forth." 
Even in the rational world of today’s science where apparently no metaphysics is 
involved, there remains the fact that many if not all laws of nature can be given the form 
of an extremal principle.  
 
Apart from this introduction, this article is divided into three sections. The first one, 
Classical Theory, roughly covers the time from Euler to the end of 19th century and is 
concerned with so called Indirect Methods. The next section describes the relevant ideas 
developed during the last 100 years and is entitled Direct Methods. An important 
ingredient here is the introduction of functional analytic techniques. In fact, it was the 
Calculus of Variations, which gave birth to the theory of Functional Analysis. The third 
and final, extremely short, section bears the title Unstable Critical Points, and is 
concerned with equilibrium solutions, which are no longer extrema. Here, an important 
role is played by topological methods. In this overview of the Principles of the Calculus 
of Variations, it was of course neither intended nor possible to cover all the important 
contributions to the subject. However, the list of references includes some of these. The 
material presented here is restricted to exemplary model cases. Thus, for example, 
variational integrals depending on higher derivatives or variational problems with 
subsidiary conditions are not included. 
 
2. Classical Theory 
 
Compared to the developments in the 20th century, which will be the topic of section 3, 
this part of the calculus of variations could also be called "Indirect Methods". The 
underlying idea is the following: Suppose you know that a solution to a variational 
problem (e.g. a minimum) exists. What can you say about such a solution? Which 
equation(s) does it satisfy? Which properties (e.g. symmetry) of the corresponding 
variational functional does it inherit? 
 
2.3 The finite dimensional case 
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First, let us have a look at the finite dimensional situation. Let Ω ⊂ n  be an open set and 
f : Ω →  a smooth function. Suppose f has a local minimum at a point x0 ∈ Ω, i.e. there 
is a ball Br(x0) ⊂ Ω, r > 0, such that 
 
 0( ) ( )f x f x≥ for any x ∈ Br(x0). (1) 
 
Then, at such a point x0 ∈ Ω we have 
 
 Df(x0) = grad f(x0) = 0 (2) 
 
where grad f(x0) ∈ n  is the vector whose components are the partial derivatives of f at 
x0.  
 
A point x0 ∈ Ω satisfying (2) is called a critical point of f. 
 
Furthermore, using second derivatives, we have: 
 
a. If x0 is a minimal point of f then D2f(x0) ≥ 0, i.e. the symmetric matrix of second 

partial derivatives is positive semidefinite. 
b. Suppose, x0 is a critical point of f and furthermore that D2f(x0) > 0 ( it positive 

definite) then x0 is a minimal point of f. 
 

2.4 One-Dimensional Variational Integrals 
 
Let us now turn to the calculus of variations. We start with one-dimensional integrals, 
that is we consider functionals F  of the form 
 
 [ ] ( , ( ), '( )) .

I

u F x u x u x dx= ∫F   (3) 

 
Such functionals are called variational integrals. Here, I ⊂  is an interval (in general I 
will be bounded), F : I × N × N →  is called the Lagrange function (we write F = 
F(x, z, p)), and u : I  → N  is supposed to be smooth. More generally, it suffices to 
consider the case F ∈ C1(U) with U ⊂ × N × N  an open set such that {(x, u(x), 
u'(x)): x ∈ I } ⊂ U. In this case, [ ]vF is defined for any v ∈ C1( I , N ) provided 

1( )|| ||C Iv u δ− < for δ > 0 sufficiently small. Thus, for an arbitrary function ϕ ∈ 

C1( I , N ) we see that 
 
 ( ) : [ ]uε εϕΦ = +F  (4) 
 
is defined as soon as 10 ( )| | : / || ||C Iε ε δ ϕ< = . We get Φ ∈ C1(−ε 0, ε 0) and easily compute 
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 '(0) { ( , , ') ( , , ' ) '} .z p
I

F x u u F x u u dxϕ ϕΦ = +∫ i i  (5) 

 
In the following we call δ F [u, ϕ ] := Φ'(0) the First Variation of F at u in direction ϕ. 
From (5) we deduce that δ F [u, ϕ ] is − with respect to ϕ − a linear functional on 
C1( I , N ). 
 
 
Definition 
 
A function u ∈ C1(I, N ) satisfying 
 
 { ( , , ' ) ( , , ' ) '} 0z p

I

F x u u F x u u dxϕ ϕ+ =∫ i i  (6) 

 
for any ϕ ∈ ( , )N

cC I∞  is called a weak C1-extremal of F . Note, that for u ∈ 

C1( I , N ) we have that (6) is equivalent to the fact that δ F [u, ·] ≡ 0 on ( , )N
cC I∞  

With the above definition in mind, we have the following first model result: 
 
Theorem 1  
 
Suppose, that u ∈ C1( I , N ) is a weak minimizer of F , that is 
 
 [ ] [ ]u u ϕ≤ +F F  (7) 
 
for any ϕ ∈ ( , )N

cC I∞  such that 1( )|| ||C Iϕ δ≤  for some δ ∈ (0,1). 

 
Then, u is a weak C1 − extremal of F . 
 
For the following considerations we assume that u and F are at least of class C2. A partial 
integration in (6) then implies (I=(a, b)) 
 

 0 { ( , ( ), '( )) [ ( , ( ), '( ))]} ( )
b

z p
a

dF x u x u x F x u x u x x dx
dx

ϕ= −∫ i  (8) 

 
for any ϕ ∈ ( , )N

cC I∞ . 
 
We now need the so called 
 
Fundamental Lemma (of the Calculus of Variations)  
 
If h∈ 0 ( , )NC I such that for any ϕ ∈ ( , )N

cC I∞ we have 
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 ( ) ( ) 0,
b

a

h x x dxϕ =∫ i  (9) 

 
then h ≡ 0 on I = (a, b). 
 
Because of the importance of this result in the calculus of variations, we present the 
simple proof below. 
Proof 
 
We argue by contradiction, that is we assume there exists i0 ∈ {1, ..., N} and x0 ∈ (a, b) 
such that 0ih (x0) ≠ 0. The continuity of h then yields the existence of some number δ  > 0 
with (x0 − δ , x0 + δ ) ⊂ (a, b) such that 
 

 0 0
0 0

1| ( ) | | ( ) | for | | .
2

i ih x h x x x δ> − <  (10) 

 
Now, choose η ∈ ( , )N

cC I∞  in such a way that 
 

 

0

0

0

0

0

( ) 0 for | | ,

( ) 0 for | | ,

( ) 0 for .

i

i

i

x x x

x x x

x i i

η δ

η δ

η

≡ − ≥

> − <

≡ ≠

 (11) 

 
Finally, define ϕ by ϕ(x) := 0ih (x0)η(x) so that from (9) we get] 
 

 

0
0

0

0
0 0

0

0

2
0

0 ( ) ( ) ( ) ( ) ( )

1 | ( ) | ( ) 0.
2

xb
i

a x

x
i i

x

h x x dx h x h x x dx

h x x dx

δ

δ

δ

δ

ϕ η

η

+

=

−

+

−

= >

> >

∫ ∫

∫

i

 (12) 

 
This is a contradiction and concludes the proof. 
 
Remark 
 
An important generalization of the fundamental lemma reads as follows: Suppose h ∈ 
L1(I, N ) (instead of C 0(I, N )) satisfies (9), then h(x) = 0 for 1L  −a.e. x ∈ I. The proof 
is similar and uses the fact that ( , )N

cC I∞  is dense in L2(I, N ). 
 
Because of the fundamental lemma we get 
 
Theorem 2  
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Suppose u ∈ C2(I, N ) is a weak extremal of F  and that F is of class C2(U) where U is 
an open set containing the 1−graph of u. We then have 
 

 [ ( , ( ), '( ))] ( , ( ), ' ( )) 0 on .p z
d F x u x u x F x u x u x I
dx

− =  (13) 

 
Remark 
Note, that (13) is a system of ordinary differential equations, the so called 
Euler-Lagrange equations: 
 

 [ ( , ( ), '( ))] ( , ( ), '( )) 0, 1, ..., .i ip z
d F x u x u x F x u x u x i N
dx

− = =  (14) 

 
To be more precise, we get a system of N quasilinear ordinary differential equations of 
second order for the N unknown functions u1, ..., uN. 
 
At this point, let us discuss several examples. 
 
Examples 
 
1. The Lagrange function F(x, z, p) = ω(x, z) 21 | |p+  with N = 1 and ω > 0 leads to the 

variational integral 
 

 2[ ] ( , ) 1 ( ')
b

a

u x u u dxω= +∫F  (15) 

 
and the Euler−Lagrange equation 

 

 2
2

'( , ) ( , ) 1 ( ') 0.
1 ( ')

z
d ux u x u u
dx u

ω ω
⎡ ⎤
⎢ ⎥ − + =
⎢ ⎥+⎣ ⎦

 (16) 

 
This can be written as 

 
 21 ( ') 'z xu uκω ω ω+ = −  (17) 

 
where 

  

2

':
1 ( ')

d u
dx u

κ
⎡ ⎤
⎢ ⎥=
⎢ ⎥+⎣ ⎦

 (18) 

 
is the curvature of the curve graph u ⊂ 2 .  
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In case ω  ≡ 1 the variational integral F  is just the length of graph u and we get κ 
≡ 0, i.e. u" ≡ 0. Thus, the weak extremals of class C2 of the length functional are 
the (affine) linear functions u(x) = αx + ß (α, ß ∈ ). 

 

2. The choice F(x, z, p) = F(p) = 1 12 2
2 2

1
| | | |

N
i

i
p p

=
= ∑ , N ≥ 1, leads to Dirichlet’s 

integral: 
  

21[ ] | ' |
2

b

a

u u dx= ∫D  (19) 

 
and the Euler−Lagrange equations 

  

( )' ( )" 0, 1, ..., .i id u u i N
dx

= = =  (20) 

 
Again, we identify the extremals as the affine linear functions. 

 
3. A classical problem in the calculus of variations is the so called brachistochrone 

problem first formulated by Galileo in 1638: 
 

Find a curve, connecting two given points A and B, on which a point mass moves 
without friction under the influence of gravity in the least possible time from the 
initial point A to the end point B below A. 
 
Galileo believed the optimal curve to be a circular arc. However, this is wrong and 
the correct solution was finally found by Johann Bernoulli in 1697:  

 
Suppose, that in a Cartesian coordinate system with gravity acting in direction of 
the negative y-axis, A = (x1, y1), B = (x2, y2), x1 < x2, y1 > y2. Then, for a function u : 
[x1, x2] →  with u(xi) = yi and u(x) < y1 for x ∈ (x1, x2], the time needed by the 
point mass to slide from A to B along the graph of u, starting at A with zero 
velocity, is given by the quantity 

 

 
2

1

2

1

1 1 | '( ) |[ ]
( )2

x

x

u xu dx
y u xg
+

=
−∫F  (21) 

 
where g denotes the acceleration due to gravity.  
 
The solution turns out to be a cycloid, which in parametric form can be given as 

 

 1

1

( ) ( sin ),
[0, ]

( ) (1 cos ).
x t x k t t

t T
u t y k t

= + −⎧
∈⎨ = − −⎩

 (22) 
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Here, the constants k and T are determined by the conditions x(T) = x2 and u(T) = 
y2. 

 
In addition to the Euler−Lagrange equations there are further conditions for a minimum 
(compare the beginning of this chapter).  
 
The necessary Legendre condition: 

 
, 1

( , ( ), ' ( )) 0i k

N
i k

p p
i k

F x u x u x ξ ξ
=

≥∑  (23) 

 
for any vector ξ ∈ N and every x ∈ I . (Follows from Φ"(0) ≥ 0.) 
 
The sufficient Legendre-condition: 
 
There is a number m > 0 such that 
 

 2

, 1
( , , ) | |i k

N
i k

p p
i k

F x z p mξ ξ ξ
=

≥∑  (24) 

 
for any vector ξ ∈ N  and every (x, z, p) ∈  × N × N . 
 
- 
- 
- 
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