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Summary 
 
Distributed processes or systems involve spatially and, possibly, temporally-varying 
parameters. They are often modeled by partial differential equations (PDEs) or integral 
equations. The task of optimizing such a process arises when one tries to determine 
inputs into the process to make it more efficient or if one tries to identify system 
properties from measurements of inputs and their corresponding outputs. Optimization 
and control of distributed processes become increasingly more important because many 
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applications are modeled as distributed systems, and because recent developments in the 
numerical solution of PDEs, in optimal control theory, and in numerical optimization, as 
well as rapidly increasing computer power, make it now possible to solve such 
optimization problems at resolutions and within time frames appropriate for applications. 
The efficient and reliable solution of optimization problems governed by distributed 
processes requires the integration of theory and numerical solution of the underlying 
PDEs, of optimization and optimal control theory, and of numerical optimization. 
 
This paper discusses the formulation of optimization problems governed by distributed 
processes, the characterization of their solutions, their discretization, and numerical 
methods for their solution. Optimization of distributed processes is an active research 
area. Most of the developments discussed in this paper took place in the last 40 years. 
Novel applications with an increased complexity generate new challenges that have 
motivated recent advancements and will fuel future developments in this area. Ever 
more powerful computer hardware and software enables the application of optimization 
methods to an increasing number of distributed processes and at the same time 
motivates new optimization algorithm development. 
 
1. Introduction 
 
In many science and engineering applications one seeks to influence the output of a 
given system through the application of suitable inputs, or one tries to identify system 
properties from measurements of inputs and their corresponding outputs. Some systems 
can be adequately described by finitely many, often time-dependent parameters. Such 
systems are called discrete or lumped parameter systems. Lumped parameter systems 
are modeled by (systems of) ordinary differential equations (ODEs) (see Ordinary 
Differential Equations and Optimization of Ordinary Differential Equations). 
Frequently, however, systems involve quantities that are distributed in space, and 
possibly in time. The spatial distribution of these quantities cannot adequately be 
represented by a fixed number of finitely many parameters. Such systems are called 
distributed parameter systems. They are modeled by partial differential equations 
(PDEs), integral equations, integrodifferential equations, or by more general functional 
equations (see Partial Differential Equations, Integral Equations, and 
Integrodifferential Equations). Inputs into the distributed system are represented by 
coefficients or coefficient functions in the PDE or by the shape of the domain in which 
the PDE is posed. The system output is obtained from the solution of the PDE. 
Examples of distributed parameter systems include the flow of air around an airfoil, the 
deformation of a plate due to an applied force, the flow of electric current through a 
body, the flow of water, oil, or gas through porous media, the temperature distribution 
inside a furnace, and the dependence of the value of a financial option on the price of 
the underlying asset. The distributed parameter systems in these examples are modeled 
by PDEs, which is assumed to be the case throughout. This simplifies our presentation. 
Most statements remain valid if a distributed parameter system is modeled by an 
integral equation, an integrodifferential equation, or by a more general functional 
equation. 

The study of PDEs provides important insight into the phenomena they model. If a 
system can be modeled by a PDE, one can use computer simulations to predict its 
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behavior. For example, the deformation of a plate due to an applied force can be 
modeled by a PDE. In the PDE model, the applied force determines the right-hand side 
of the PDE or its boundary conditions. The solution of the PDE—called the state—
models the deformation of the plate. Material properties of the plate determine PDE 
coefficients. Thus by solving the PDE with varying parameters, one can estimate the 
deformation of a plate when exposed to varying forces, or one can predict the 
deformations of plates manufactured out of different materials when exposed to a 
certain force. Analogous procedures are used to simulate complex phenomena such as 
the flow of air around a cruising airplane, the impact of collisions on car bodies, the 
spread of contaminants in soil, and the flow of blood in a heart. Generally, PDE models 
are used to discover properties of the underlying system or they are used to modify the 
system so that it performs better. Single simulations are not sufficient to accomplish 
these tasks. Instead they lead to optimization problems in which objective function and 
constraint function evaluations involve the solution of the PDEs that model the system. 
Optimization problems may arise in the context of parameter estimation problems, 
optimal control problems or optimal shape design problems. 

Optimization and control of distributed processes have increasingly become more 
important. This is because a growing number of applications require the resolution of 
system properties at a level that cannot be attained by simple algebraic models or 
lumped parameter models, but that requires PDE models. It is also due to recent 
developments in the numerical solution of PDEs, in optimal control theory, and in 
numerical optimization, as well as to rapidly increasing computer power, all of which 
now make it possible to solve such optimization problems at resolutions and within time 
frames appropriate for applications. 

Optimization problems governed by distributed processes are challenging. The efficient 
and reliable solution of such problems requires the integration of the theory and the 
numerical solution of the underlying PDEs, of optimization and optimal control theory, 
and of numerical optimization (see Partial Differential Equations, Numerical Solution 
of Partial Differential Equations, Optimization and Control of ODEs, and Nonlinear 
Programming.) 
 
2. Optimization Problems Governed by Distributed Processes 
 
Abstractly, most optimization problems governed by distributed processes can be 
written in the language of functional analysis as 

min ( , ),
. . ( , ) 0,

( , ) 0,
( , ) .

J y u
s t c y u

e y u
h y u K

=
=
∈

 (1) 

In this abstract problem formulation, u denotes the control, the design parameter, or the 
parameter to be identified. The output of the system—called the state—is represented 
by y. These variables belong to infinite dimensional vector spaces U and Y, called the 
control space and the state space, respectively. The objective function :J Y U R× → , 
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where R denotes the set of all real numbers, is a quantification of the performance 
measure. The variables y and u must be in the feasible set 

{ }, : ( , ) 0, ( , ) 0, ( , )F y Y u U c y u e y u h y u K= ∈ ∈ = = ∈ . (2) 

The constraints in (1) are described by three functions :c Y U C× → , :e Y U E× → , 
and :h Y U H× → , respectively, where C, E, and H are vector spaces. One 
distinguishes between two equality constraints. The first equality constraint c(y,u) = 0 
represents the partial differential, integral, or functional equation that models the 
distributed process. This equation is called the governing equation or the state equation. 
The second equality constraint e(y,u) = 0, as well as ( , )h y u K∈ , where K H⊂ is a 
cone, represent auxiliary constraints on states and controls. The last constraint 

( , )h y u K∈ generalizes inequality constraints ( , ) 0h y u ≤  in finite dimensions. The 
distinction between c(y,u) = 0 and e(y,u) = 0 is useful because these constraints are 
treated differently in several optimization algorithms for the solution of (1). To simplify 
the presentation, it is assumed that c(y,u) = 0 represents a PDE. In this paper u will be 
frequently called the control, even though it might actually represent a parameter to be 
identified or shape to be designed. The control space U, the state space Y, and the image 
spaces C, E, and H are assumed to be Banach spaces. 

Most optimization problems governed by distributed processes fit into one of the 
following three classes of optimization problems: 

• Parameter identification problems, 
• Optimal control problems, and 
• Shape optimization problems. 

All of these problems can be formulated as optimization problems of the form (1). 
However, their problem characteristics are slightly different, and these differences can 
influence the choice of the optimization approach taken for their solution. 

2.1. Parameter Identification Problems 

Parameter identification problems, which are also known as parameter estimation 
problems or as inverse problems, arise when one tries to identify system properties from 
measurements of inputs and their corresponding outputs (see Parameter Identification, 
Parameter Estimation, and Inverse Problems). One application area that leads to 
parameter estimation problems is noninvasive material interrogation. Concrete 
examples include computer tomography and the identification of subsurface earth 
conductivity properties from electromagnetic measurements on the earth surface. 

In the context of parameter identification problems, u denotes the parameter to be 
identified. The solution y of c(y,u) = 0 simulates the output of the system with 
parameter u. Given measurements meas

iy , 1 = 1, …m, of the system output, one ideally 

wants to find u such that ( , ) 0meas
ic y u =  for I = 1, …m. However, this problem is 

usually ill-posed. This means that a solution u does not exist, that the solution is not 
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unique, or that small variations in the measurements meas
iy lead to large variations in the 

solution u. A large amount of research in parameter identification is devoted to the 
development and analysis of so-called regularization techniques, that is, solution 
techniques that can cope with the ill-posedness and generate parameter estimates that 
approach the true parameter as measurement errors become small. Most regularization 
techniques are based on a formulation of the parameter identification problem as an 
optimization problem of the type (1). One typically tries to compute u so that the error 
between the given, measured output meas

iy and the predicted output y (i.e,. the solution 
of c(y,u) = 0), is small. The objective function J(y,u) is often a combination of a term 
that measures the error between meas

iy and y and a so-called regularization term that 
introduces additional information about the parameter into the problem. Regularization 
terms may also be introduced through constraints of the form ( , )h y u K∈ . Details on 
regularization techniques for parameter identification problems are presented elsewhere 
(see Parameter Identification, Parameter Estimation, and Inverse Problems). 
Optimization problems (1) originating from parameter identification problems usually 
depend on some regularization parameter, which has to be carefully adjusted based on 
the computed solution y and u. One often has to solve sequences of optimization 
problems (1) to determine an appropriate regularization parameter. 

2.2. Optimal Control Problems 

In optimal control one wants to determine a system input u so that the performance of 
the system is optimized. If J is the performance measure, then this leads to a problem of 
the type (1). The constraint ( , ) 0c y u = implicitly describes the dependence of system 
output y on the system input.  

Unlike in parameter estimation there is no “true” system input that needs to be 
recovered, but one is able to choose among all technologically feasible inputs. 
Technological constraints on the system input u lead to constraints of the 
type ( , ) 0e y u = or ( , )h y u K∈ . Such constraints can also arise when one tries to account 
for system disturbances that are unknown at the time the optimal control is computed. 

In many applications, an approximate solution of (1) must be computed in a specified, 
short time frame. In such cases one cannot hope to compute a solution of (1), but only a 
control that achieves a sufficient improvement in system performance as measured by J. 

- 
- 
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