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Summary 
 
This paper summarizes the main results of classical queueing theory and some recent 
developments in multiclass queueing networks. In the first part, the different 
characteristics of a queueing system are discussed, such as arrival process, service 
facilities, queueing discipline, and service times.  
 
The main focus of this paper lies on the long run behavior of queueing systems. In 
particular we investigate the M/M/1 queue, the M/M/∞ queue, the M/M/m queue, the 
M/M/1/K queue, Erlang’s loss system, the M/GI/1 queue and the GI/M/1 queue. We 
derive a stability condition for these queues and give the limiting distribution of the 
number of waiting jobs in the system or the limiting distribution of the waiting time. The 
important Little’s Formula is explained and at the end we shortly introduce some special 
queueing networks, so-called open multiclass networks. 
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1. Introduction 
 
Queueing systems are one of the oldest and most widely investigated topics of Markov 
models. The main evolution of this field has taken place in three waves. The first wave 
appeared around 1918 with the emerging telephony technology and the investigations of 
the Danish mathematician A.K. Erlang. In the seventies, fresh impetus has been given by 
problems that arise in computer systems. Last but not least, the investigation of re-entrant 
networks for semiconductor manufacturing plants brought some new aspects in the 
nineties. Therefore, typical applications of queueing systems are in the area of computer 
systems, data transmission, telecommunication and manufacturing systems. More recent 
applications include ISDN and the Internet. Queueing situations arise, when a limited 
capacity has to be shared by incoming jobs. For example in time-sharing computer 
systems jobs are created by users, which then compete for processing capacity, storage 
capacity and input/output facilities. Interesting performance measures of these systems 
are e.g. response or waiting times, server utilization and system throughput. In the 
following, we will look at some simple queueing systems and open multiclass queueing 
networks. 
 
2. Design of Queueing Systems 
 
Queueing systems can be distinguished according to the following criteria, which 
constitute the basic design of the queue. 

2.1 Arrivals 

Jobs can arrive one at a time or in batches, where the batch size can be random. We 
denote by τn the random interarrival time between job n and n + 1 (or batch n and n + 1). 
The jobs that arrive are taken from a pool of jobs, which can be finite or infinite. 

2.2 Service Facilities 

The waiting room can be finite or infinite. In a system with finite waiting room, arriving 
customers are blocked when all places of the waiting room are occupied. Blocked 
customers can get lost or will retry to enter the queue after a random time. In this case, we 
speak of a retrial queue. Queueing systems also differ in the number of servers available. 
An infinite number of servers are also allowed. Every arriving job will then get into 
service immediately. 

2.3 Queueing Discipline 

Jobs can be served one at a time or in batches. We denote by σn the random service time 
of job n (batch n). If jobs are served one at a time, there has to be an algorithm that 
determines the order in which the waiting jobs are served. The most common queueing 
disciplines are 

 
FCFS First Come, First Served (or FIFO: First In, First Out). Jobs are served 

in the order of arrivals. This is the usual service discipline if nothing 
else is mentioned. 
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LCFS Last Come, First Served (or LIFO: Last In, First Out). Whenever the 
server has finished a job, he/she will continue with the latest arrived 
job. 

SIRO Serve In Random Order. The next job to be served is picked randomly 
from the waiting ones. 

PS Processor Sharing. The server devotes his/her capacity equally to the 
waiting jobs. i.e. if n jobs are waiting, each job receives 1

n
 of the 

server’s capacity. 

RR Round Robin or time-sharing. The server spends a fixed time Δ on one 
job (or less, when service completion occurs) and switches afterwards 
to the next waiting job. 

If different job classes are served according to priorities given to these classes, we call a 
service preemptive, if the server switches instantaneously upon arrival to a new job of 
higher priority. Vice versa, a service is called non-preemptive if the server always finishes 
the service. 

In what follows, we will restrict our exposition to simple queueing systems. Simple 
queueing systems are those, where arrival and service is one by a time and the sequences 
of interarrival times and service times are stationary. For simple queueing systems a 
shorthand notation of the form α/ß/m/n/K has been established, where 

α gives the type of interarrival distribution. 

ß gives the type of service distribution. 

m gives the number of servers. 

n gives the size of the waiting room. 

K gives the number of jobs in the system. 

α and ß can take for example the following values: 

M exponential distribution (Markovian); the corresponding sequence of 
interarrival or service times consists of independent, exponentially 
distributed random variables. 

D deterministic, fixed time. 

G general distribution. 

GI general distribution; however, the corresponding sequence consists of 
independent random variables. 

Ek Erlang distribution with k phases. 

PH phase-type distribution. 

MX batch arrivals with exponential interarrival times and batch size 
distribution as the random variable X. 
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Often the notation is truncated to α/ß/m in which case the waiting room and the number of 
jobs are supposed to be infinite. 
 
3. Performance Measures and Special Queues 
 
Basic processes that describe the queueing system are e.g. 

Xt the number of jobs in the system at time t. 

Wn the waiting time of job n. 

Vt the virtual waiting time at time t. This is the sum of the (remaining) 
waiting times of all jobs which are in the system at time t. 

In general, one is interested in the long-run behavior of queueing systems, i.e. we are 
interested in Xt, Vt and Wn, when t or n is large. Mathematically this means we have to 
determine the limit distributions of the stochastic processes. When the interarrival and 
service distributions are independent exponentially distributed, the preceding processes 
are Markov processes and we can apply the methods described in the article on Markov 
Models to identify limit distributions. We will outline this procedure in the next sections. 

Other interesting performance measures are the response time, throughput and server 
utilization. The response time is defined as the time between arrival of a job and its 
departure and the throughput is the average number of jobs leaving the system per unit 
time. The utilization of servers U in the case of only one server is the probability that the 
server is busy. If there are m identical servers and r are busy on average, then r

U
m

= . 

An important characteristic of queueing systems is the traffic intensity. In a G/G/m queue 
the traffic intensity ρ is defined by  

 
[ ]
[ ]

.k

km
σ

ρ
τ

=
E
E

     (1) 

Hence, the traffic intensity is the ratio of expected service time and expected interarrival 
time. Loynes (1962) has shown for G/G/1 queues (with only stationary interarrival and 
service times) that the process (Wn) is stable if ρ < 1, which means that the sequence of 
distributions of Wn converges to a proper distribution as n tends to infinity. In what 
follows we will show for several Markovian queueing systems that if ρ < 1, i.e. the 
number of arrivals is less than the number of potential departures, the system is stable 
(positive recurrent). If ρ > 1 the system is unstable (transient) and if ρ = 1 it is 
null-recurrent. 

3.1 M/M/1 Queue 

Here we have one server and an unlimited waiting room. Arrivals occur according to a 
Poisson process with intensity λ and the service times are independent and exponentially 
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distributed with parameter µ. The traffic intensity in this model is ρ = λ
μ

 and the process 

(Xt) which gives the number of waiting jobs is a birth-and-death process with birth rates λi 
≡ λ and death rates µi = µ min{1, i}, i ∈ 0N . According to the birth-and-death process 
example described in Markov Models) we obtain that the M/M/1 queue is positive 
recurrent if and only if ρ < 1 and the limit distribution π  of the number of waiting jobs is 
given by the following geometric distribution  

 (1 ) , 0, 1, 2, ... .i
i iπ ρ ρ= − =      (2) 

πi is the probability that there are i jobs waiting in the long run. In particular, π0 = 1 − ρ is 
the probability that the server is idle. In other words, U = ρ is here the server utilization.  

The throughout in this system is equal to λ. 

3.2 M/M/∞ Queue 

In this case, we have infinitely many servers and each arriving job will immediately 
receive service. Arrivals occur according to a Poisson process with intensity λ and the 
service times at each server are independent and exponentially distributed with parameter 
µ. Let us denote λ

μ
η =  (note that the traffic intensity is here formally 0). The process (Xt) 

which gives the number of waiting jobs is a birth-and-death process with birth rates λi ≡ λ, 
and death rates µi = iµ, i = 0, 1, ..., . According to the birth-and-death process example 
described in Markov Models we obtain that the M/M/∞ queue is always positive recurrent 
and the limit distribution π of the number of waiting jobs is given by the following 
Poisson distribution  

 , 0, 1, 2, ...
!

.
i

i e i
i

η ηπ −= =     (3) 
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