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Summary 
 
This article offers an introduction to the basic lines of research in inventory 
management: economic order quantity (EOQ) type models, dynamic economic lotsize 
models, periodic review stochastic demand models, and continuous review stochastic 
demand models. 
 
1. Introduction 
 
Inventory theory deals with the management of stock levels of goods with the aim of 
ensuring that demand for these goods is met. Most models are designed to address two 
fundamental decision issues: when a replenishment order should be placed, and what the 
order quantity should be. Their complexity depends heavily on the assumptions made 
about demand, the cost structure and physical characteristics of the system. 
 
Inventory control problems in the real world usually involve multiple products. For 
example, spare parts systems require management of hundreds or thousands of different 
items. It is often possible, however, for single-product models to capture all essential 
elements of the problem, so it is not necessary to include the interaction of different 
items into the formulation explicitly. Furthermore, multiple-product models are often 
too unwieldy to be of much use when the number of products involved is very large. For 
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this reason single-product models dominate the literature, and are used most frequently 
in practice. In the following, we therefore restrict attention largely to instances 
involving a single product. 
 
Even when inventory models are restricted to a single product the number of possible 
models is enormous, due to the various assumptions made about the key variables: 
demand, costs, and the physical nature of the system. The demand for the product may 
be deterministic or stochastic; it may completely predictable, or predictable up to some 
probability distribution only; its probability distribution may even be unknown. 
Moreover, demand may be stationary or nonstationary, and may depend on economic 
factors that vary randomly over time. 
 
The costs involved include ordering/production costs, which are either proportional to 
the order quantity or are more general. They may incorporate a setup cost, costs for 
holding the product in stock, and penalty costs for not being able to satisfy demand 
when it occurs. In addition, a service level approach may be used if it is too difficult to 
estimate penalty costs. 
 
The stream of costs (or expected costs, if there is some uncertainty in demand and/or 
lead-times) over a finite or infinite horizon is minimized. The average cost criterion 
compares the order policies with regard to their average cost, while the total cost 
criterion compares order policies in relation to the present value of their cost-stream. 
 
Inventory models are also distinguished by the assumptions made about various aspects 
of the timing and logistics of the model. Examples of these may include the following: 
 
• The lead-time is often zero, but can also be of a fixed or random length. 
• Back-ordering assumptions, which may be need to be made about the way that the 

system reacts when demand exceeds supply. The most common assumption is that 
all excess demand is back-ordered; the other extreme assumption is that all excess 
demand is lost. Mixtures of both the “backlogging” and the “lost sales” cases have 
been explored. 

• Stock levels are reviewed continuously (over time) or periodically, maybe once a 
day or once a year, and are assumed to be known precisely or approximately. 

• The quality of stored units, usually constant, is also allowed to change over time. 
Here we may distinguish between continuously deteriorating items and items with a 
fixed or random lifetime. Furthermore, the quality of incoming goods may be 
inconsistent due to the presence of random numbers of defective items. 

• Different forms of ordering, such as emergency orders, as well as limited capacities 
of the resources used in production, are also considered. 

• Inventory systems covering several locations, such as series systems, assembly 
systems, and distribution systems, differ in terms of their supply–demand 
relationships. 

 
2. The Basic EOQ Model 
 
We start with the classic economic order quantity (EOQ) model, which has formed the 
basis for a huge number of papers. In this simple model there is one product, which is 
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replenished in continuous units. The demand is known with certainty and occurs at a 
constant rate λ; shortages are not allowed. The lead-time for each order is zero. The 
costs are stationary and consist of a fixed cost k, an ordering cost c per unit ordered, and 
a cost h per time unit that is charged for each unit of on-hand inventory. 
 
On the basis of orders of a fixed size q, there is a cycle time (time between two 
successive arrivals of orders) of length T = q/λ. Since all cycles are identical, the 
average cost per time unit is then simply the total cost incurred in a single cycle divided 
by the cycle length, which is identical to 
 

C(q) = 
( )

0

1
12
2

T k cq hTqk cq h q t dt k c hq
T T q

λ λ λ
+ ++ + −

= = + +
∫  

 
and, as a function of q, becomes minimal for 
 
q* = 2 /k hλ  
 
a result known as the economic order quantity. 
 
There are numerous variants and extensions of the basic EOQ model. Here we can only 
outline certain lines of research, and refer students to the Bibliography for more detailed 
information. Permitting back-orders enlarges the set of operating policies, and leads to a 
larger order quantity and a lower total cost compared with the EOQ model. If there is a 
deterministic lead-time, which is nonzero, then each order should be placed so that it is 
received exactly when the on-hand stock decreases to zero. The supply process in the 
EOQ model may result from a production process at constant rate μ > λ. Then C(q) has 
the same form as in the EOQ model, with h replaced by h(1–λ/μ), and thus becomes 
smaller while q* becomes larger. In the basic EOQ model the variable cost c is constant 
for orders of all sizes. However, it is common for suppliers to offer price concessions 
for large orders. In fact, there are two kinds of discounts: incremental and all-units with 
cost functions k + c(q), where c(q) = c0q for 0<q<χ and c(q) = c0χ + c1(q–χ) for q≥χ, 
apply in the incremental case and c(q) = c0q for 0<q<χ and c(q) = c1q for q≥χ in the all-
units case. A couple of EOQ-like calculations then suffice to find the optimal policy. 
 
Learning effects are said to exist when the unit production cost or production time 
decreases as a result of experiences gained in the process. The implication of the lot-
sizing problem is that the production cost is not constant over time. More general, 
extensions exist allowing cost parameters to change after a known future point in time, 
or to increase/decrease continuously at a fixed rate. A trend in demand may also be 
considered. 
 
Up to now we have assumed that the goods received from the supply system are free 
from defects, and that the product remains in perfect condition throughout the process to 
final delivery to the customer. Now, let us first suppose that each batch that the supply 
system sends contains a fixed proportion of defective product. This case reduces to the 
EOQ model with appropriately adjusted parameters. Secondly, suppose that the supply 
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system operates perfectly, but that defects arise while the product is held in inventory, 
as in the case of perishable goods such as food and medicines. The EOQ extensions 
primarily suppose exponential decay of the items; they use a differential equation to 
obtain the inventory on hand and, finally, a nonlinear program to obtain the approximate 
optimal order quantity. 
 
The basic EOQ model assumes that the amount received is the same as the amount 
ordered. A production process is often imperfect, however, so the amount received 
(given lot size q) can be thought of as a random variable Y, for example, with first and 
second moment E(Y|q) and E(Y²|q), respectively, resulting in C(q) = cλ + 
[kλ+hE(Y²|q)/2]/E(Y|q). 
 
Most work of this kind has been extended to inventory systems involving several 
locations. 
 
3. The Dynamic Economic Lotsize Model 
 
We next consider a fixed-time inventory model with deterministic demand varying over 
time. Let x1, …, xN be the known demand for the single product at the time points 1, …, 
N. We must meet all demand as it occurs: no back-orders or lost sales are permitted. We 
can order at each point, and we may carry inventory from one point to the next. 
Replenishment decisions take effect immediately: there is no lead-time. An order of size 
an at time n incurs a cost c(an) = kn + cnan, if an > 0, and c(an) = 0, otherwise. Further, 
there is a cost hn(sn) = hn⋅sn for holding inventory sn at time n. 
 
The objective is to schedule the order sizes a1, …, aN so as to satisfy the demand x1, …, 
xN at minimum total cost, which leads to the following nonlinear program 
 

minimize C(a1, …, aN) = ( ) ( )( )
1

N

n n n n
n

c a h s
=

+∑  

 
subject to the initial condition s1 = 0, the system dynamics 
 

1n n n ns s a x+ = + −  (n =1, …, N) 
 
and the non-negativity restrictions 
 
s2 ≥ 0, …, sN+1 ≥ 0, a1 ≥ 0, …, aN ≥ 0. 
 
The model possesses the remarkable property (the zero-inventory property) that an 
optimal solution * *

1 1,..., Ns s + , * *
1 ,..., Na a  exists such that * 0na >  only exists when * 0ns = . 

Additionally, when the demands are all integer-valued, the only feasible values for *
na  

are 0, xn, xn+xn+1, …, xn+…+xN, and the problem can then be reformulated and solved 
as a shortest-path problem. 
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Many extensions of the basic dynamic economic lotsize model have been developed. 
They embody lead-times, discounted costs, back-orders, and upper limits on order 
quantities. 
 
4. Periodic Review Stochastic Demand Models 
 
So far, we have supposed that the demand is completely predictable. In reality, however, 
there is often some uncertainty in demand. Uncertainty in demand degrades the 
performance of the inventory system; in particular, we are no longer able to foresee the 
ultimate effects of our actions, and thus may have to tolerate unplanned stockouts. This, 
however, will be true to some extent only when following an optimal order policy. We 
will now look at the structure of such an optimal policy, and the optimality criterion that 
it is based on. For this purpose, we adopt a discrete-time formulation as in Section 3. 
The system is observed at the beginning of a finite or infinite number N of periods (time 
points n = 1, 2, …, N); the demand X1, X2,…, XN in the successive periods is 
independent, identically distributed with probabilities q(x), x ∈ {0, 1, …}. 
 
We consider cost c > 0 to purchase one unit of the product at the beginning of a period. 
Further, let h > 0 denote the cost per unit of the inventory remaining at the end of the 
period, and let p > c be a penalty cost per unit of unsatisfied demand. The lead-time is 
zero. 
 
For N =1 we obtain the single period model, also known as the “newsboy” or “news-
vendor” model. It applies directly to situations in which the (useful) life of a product is 
one period only, but forms the basis for nearly all multi-period models. 
 
- 
- 
- 
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