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Summary 
 
Stochastic Operations Research is concerned with phenomena that vary as time advances 
and where the variation has a significant chance component. This covers an enormous 
variety of applications in engineering systems, management science, economics, and 
computer science. Many applications focus on decision making. Stochastic models are 
then used to compare alternative decisions. In this paper, we discuss the most important 
stochastic models in Operations Research: Markov models, Markov decision processes, 
stochastic games, queueing systems, inventory models and investment models. Moreover, 
the section on adaptive dynamic programming includes statistical methods for analyzing 
sequential decision problems under uncertainty. 
 
1. Introduction 
 
One of the central problems in Operations Research is how to quantify the effects of 
uncertainty about the future. Uncertainties are important characteristics in a variety of 
applications in engineering systems, management science, computer science, economics 
and biological sciences. A few examples are queueing systems (the random occurrences 
being arrival of customers or completion of service), investment planning (changes of 
interest rate or market price), stochastic scheduling (completion of jobs or failure of 
machines), inventory systems (changes of demand, random lifetime of goods), insurance 
analysis (occurrence of claims, changes in premium rates) and optimal exploitation of 
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resources such as fisheries, forestry or oil (amounts of resources found, random factors 
associated with harvesting or production). All these examples-and there are many 
more-are dynamic in that decisions are taken over time and decisions taken now have 
consequences for the future because they could affect the availability of resources or limit 
the options for subsequent decisions. Stochastic Operations Research is concerned with 
such dynamic and stochastic models. Methods of this paper have been applied 
successfully to these applications.  
 
In this exposition, we present the most important stochastic models. Section 2 covers 
Markov chains and models and lays the foundation for the following sections. Section 3 
describes the fundamentals of Markov decision processes. In section 4 we introduce 
concepts of game theory in a dynamic setting. The next three sections are concerned with 
important structured models: queueing systems, inventory and investment models. The 
last section on adaptive dynamic programming includes some statistical methods for 
analyzing sequential decision problems under uncertainty. Stochastic reliability models, 
statistical methods that arise in fitting stochastic models to real data, simulation 
experiments and also methods of stochastic programming are not treated in this paper. 
 
2. Markov Models 
 
Independence of random variables is a very restrictive assumption in stochastic modeling.  
The field of stochastic processes has focused on temporal relationships among random 
variables and on formulation of tractable forms of dependence, three of which have 
proved uncommonly fruitful in that they are simultaneously broad enough to be 
applicable and narrow enough to be interesting: stationary processes, martingales and 
Markov processes. Each has been studied extensively, and they carry a vast literature 
encompassing theory and application. Here we emphasize Markov processes and for 
simplicity, we shall restrict to Markov chains with finite or countable state spaces. The 
state space is always denoted by S.  
 
We start with discrete-time Markov chains (Xn). The sequence (Xn) is called a 
discrete-time Markov chain if for all n ∈ 0  and for all states i, j, ik ∈ S 
 

 1 0 0 1 1

1

( | , ..., , )
( | )
n n n n

n n ij

X j X i X i X i
X j X i p
+ − −

+

= = = =

= = = =

P
P

      (1) 

 
for a suitable transition probability pij. This condition (1), the Markov-property, was 
proposed by A.A. Markov (1856-1922) as part of work aimed at generalizing the classical 
limit theorems for independent random variables. It means that prediction of the future of 
the process, once the current state is known, cannot be improved by additional knowledge 
of the past. The matrix P = (pij) is called transition matrix. Two fundamental properties of 
P are that 
 
 0 and 1 for all , .ij ij

j S
p p i j S

∈
≥ = ∈∑        (2) 

 
A matrix satisfying these properties is a stochastic matrix, and is a transition matrix of 
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some Markov chain. 
 
An important role in the analysis of Markov chains play the matrix powers of P. We 
denote P0 = I, where I is the identity matrix, and the elements of the matrix Pn by ( )n

ijp . It 

is important to note that the matrix Pn is again a stochastic matrix and ( )n
ijp  exactly gives 

the probability of getting from state i to state j in n steps, i.e. 
 
 ( )( | ) for all m 0.n

n m m ijX j X i p+ = = = ≥P       (3) 
 
The probabilities ( )n

ijp  are therefore called n-step transition probabilities and can be 
computed using the Chapman-Kolmogorov equation  
 
 ( ) ( ) ( )  for all , .n m n m

ij ik kj
k S

p p p i j S+

∈
= ∈∑       (4) 

 
We now introduce two examples, which will be used to illustrate concepts and results. 
 
Example (Random Walk) 
 
Let (Yn) be a sequence of independent and identically distributed random variables with 
P (Yn = 1) = p, P (Yn = 1) = 1  p and p ∈ (0, 1). We assume that X0 = 0 and for n = 1, 2, ...,  
 

 1
1

: .
n

n k n n
k

X Y X Y−
=

= = +∑       (5) 

 
Then (Xn) is obviously a Markov chain. The transition probabilities are given by pii+1 = p 
and pii1= 1  p. 
 
Example (Gambler’s Ruin) 
 
A gambler makes repeated independent bets and wins $1 with probability p ∈ (0, 1) or 
loses $1 with probability q := 1  p. The gambler starts with an initial state i and will play 
repeatedly until all money is lost or until the fortune increases to $M. Let Xn be the 
gambler’s wealth after n plays. It is easily seen that (Xn) is Markov chain with state space 
{0, 1, ..., M}. The Markov property follows from the assumption that outcomes of 
successive bets are independent events. The transition probabilities are given by p00 = 
pMM = 1 and for i ≠ 0, i ≠ M, 
 
 1 1and .ii iip p p q+ −= =       (6) 
 
State classification is a fundamental problem for Markov chains. The crucial issues are 
whether return to a state is certain or less than certain and, when return is certain, whether 
the mean time to return is finite. In the nicest case of finite mean time to return, the 
Markov chain exhibits stable long-run behavior, which we describe presently. Let τi := 
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inf{n ∈  | Xn = i} be the time of the first visit to state i ∈ S. A state i is called recurrent 
if i�P (τi < ∞) = 1 and transient if iP (τi < ∞) < 1. Recurrent states are classified further. A 
recurrent state i is called positive recurrent if mi := iE [τi] < ∞ and null-recurrent if mi = 
∞. All these state properties are solidarity properties (see Markov Models). Moreover, a 
Markov chain is called irreducible if for each i and j there exit n ∈  such that ( ) 0n

ijp > . 
To classify the states of an irreducible Markov chain one employs the following criteria: 
 

(Xn) is positive recurrent if and only if there exists a probability distribution x 
satisfying j i S i ijx x p∈= ∑ for j ∈ S. 

 
Let i0 be any fixed state. Then (Xn) is transient if and only if there exists a bounded 
solution x, not identical zero, such that 

0i j i ij jx p x≠= ∑  for i ≠ i0. 
 
Example (Random Walk) 
 
The random walk (Xn) is irreducible. All states are transient if p ≠ 1

2
 and null recurrent if 

p = 1
2

. 

 
Example (Gambler’s Ruin) 
 
The states i = 0 and i = M are positive recurrent, all other states are transient. An 
interesting question is what is the probability that the gambler’s fortune will reach M 
before all the resources are lost. Let us denote this probability by Pi. It is not too difficult 
to show that 
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21 ( / )
1, if 
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      (7) 

 
The probability 1 – Pi is then the ruin probability of the gambler. What is the expected 
number Ti of bets in this play? This expected number is surprisingly large and is given by 
 

 

1 1 ( / ) 1, if 
21 ( / )
1( ) , if 
2

i

M
i

q pi M p
q p q pT

i M i p

⎧ ⎡ ⎤−
− ≠⎪ ⎢ ⎥⎪ − −⎢ ⎥⎣ ⎦= ⎨

⎪
− =⎪⎩

       (8) 

 
An important question concerns the long run behavior of a Markov chain. More precisely, 
we are interested in the probability πj with which the Markov chain will be in state j after 
a large number of transitions. Before the main limit theorem can be given, one further 
concept is needed. A recurrent state i is periodic with period d ≥ 2, if 
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 ( )an integer multiple of 1i i dτ =�P .      (9) 
 
The aperiodic case is much nicer. Random walks are periodic with d = 2. The solidarity 
property extends: in an irreducible Markov chain, either all states are aperiodic or all are 
periodic with the same period. We come now to the main limit result: 
 

Let (Xn) be an irreducible, positive recurrent and aperiodic Markov chain. Then 
there exists the limiting probability πj= limn→∞

( )n
ijp for all i,  j ∈ S, which satisfies 

πj = 1
m j

. Moreover, π = (πj) is the unique stationary distribution. 

 
A stationary distribution π = (πi) is a probability distribution on S satisfying the linear 
equation 
 

for .i j ji
j S

p i Sπ π
∈

= ∈∑        (10) 

 
An irreducible, positive recurrent and aperiodic Markov chain has limiting probabilities 
which are independent of the initial state (a phenomenon termed ergodic) and which are 
the inverse of the mean time to return. 
 
In the second part of this section, we consider continuous-time Markov chains (Xt). The 
stochastic process (Xt) is called a continuous-time Markov chain if for all states i, j, ik ∈ S 
and time points 0 ≤ t0 < t1 <  . . . < tn+1 
 

1 0 10 1( | , ..., , )
n n nt t t n tX j X i X i X i
+ − −= = = = =P  

1 1( | ) ( )
n nt t ij n nX j X i p t t
+ += = = = −P        (11) 

 
for a suitable transition function pij(t). Each matrix P(t) = (pij(t)) is a stochastic matrix and 
P(0) = I. Moreover, the Chapman-Kolmogoroff equation (or semigroup property) 
 
 ( ) ( ) ( ) for all , 0P s t P s P t s t+ = ≥        (12) 
 
is fulfilled. In what follows we will always assume that P(t) is right-continuous in t = 0. 
Then the function t pij(t) is continuously differentiable and 
 

 
0

( )
: (0) lim' ij

ij ij t

p t ij
q p

t
δ

↓

−
= =       (13) 

 
exists. The derivatives satisfy 
 
 : 0, [0, ) for and .ii i ij ij i

j i
q q q i j q q

≠
= − ≤ ∈ ∞ ≠ ≤∑        (14) 

 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

OPTIMIZATION AND OPERATIONS RESEARCH – Vol. IV - Stochastic Operations Research - Ulrich Rieder 

©Encyclopedia of Life Support Systems (EOLSS) 

The matrix Q = (qij) is called intensity matrix or generator and the interpretation is that for 
i ≠ j and h > 0 
 
 ( | ) ( )t h t ijX j X i q h o h+ = = = +P        (15) 
 
 ( | ) 1 ( ).t h t iX j X i q h o h+ = = = − +P       (16) 
 
The matrix Q is called conservative if j i≠∑ qij = qi < ∞ for all i ∈ S. For finite state spaces 
Q is always conservative. 
 
Example (Poisson Process) 
 
Let (Xt) be an arrival or counting process, i.e. Xt is the random number of arrivals in [0, t]. 
(Xt) is a Poisson process if X0 = 0 and (Xt) has the transition function 
 

 ( )( )  for .
( )!

j i
t

ij
tp t e j i

j i
λ λ −

−= ≥
−

      (17) 

 
for some constant λ > 0, known as the rate of (Xt). The state space is 0  and the 
intensities are  
 

1, for .ii iiq q i Sλ λ+= − = ∈   
 
Example (Birth and Death Process) 
 
The Markov chain (Xt) with state space 0  is a birth and death process if for each i ∈ S 
 
 ( )1 1, ,ii i ii i i ii iq q qμ μ λ λ− += = − + = .     (18) 
 
λi are the birth rates and µi the death rates. One interprets Xt as the size at time t of a 
randomly varying population, which changes only by single births and deaths. 
 
Under some mild conditions the transition functions can be reconstructed from the 
intensity matrix Q by using the forward differential equation P'(t) = P(t)Q for t ≥ 0 and 
the backward equation P'(t) = QP(t) for t ≥ 0. Limit theory parallels that for discrete-time 
Markov chains. To make this precise, we note first that (Xt) moves only by jumping from 
one state to another. Let 0 = T0 < T1 < T2. . . be the time of these transitions, with Tn = ∞ if 
there are fewer that n jumps. If Tn < ∞, let Yn= 

nTX  be the state entered at Tn, and 
otherwise let Yn= Yn1. Then (Yn) is a Markov chain, the so-called embedded Markov chain, 
with transition probabilities 
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, if 

0, if .

ij

ij i

q
i j

p q
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⎧
≠⎪= ⎨

⎪ =⎩

      (19) 

 
State classification for (Xt) is effected in part via (Yn). State i ∈ S is recurrent (transient) if 
i is recurrent (transient) for the embedded Markov chain (Yn). (Xt) is called irreducible if 
(Yn) is irreducible. Then we come to the main limit result: 
 

Let (Xt) be irreducible and recurrent. Then there exist the limits πj = limt→∞pij(t) for 
all i, j ∈ S, which are independent of the initial state. Either π ≡ 0 or j S∈∑ πj = 1. 

 
The dichotomy above can be used to complete the classification of recurrent states in the 
irreducible case. All states are positive recurrent if j S∈∑ πj = 1, and null-recurrent if π ≡ 0. 

Moreover, the limit distribution π is a stationary distribution if 
 

( ) for all  and 0.i j ji
j S

p t i S tπ π
∈

= ∈ ≥∑       (20) 

 
An effective technique for computing a stationary distribution is given in the next result: 
 

Let (Xt) be irreducible and positive recurrent with intensity matrix Q. Then the 
stationary distribution π is the unique probability distribution on S satisfying the 
linear equation 

 
 0 for i ij
i S

q j Sπ
∈

= ∈∑       (21) 

 
Example (Birth and Death Process) 
 
The birth and death process is obviously irreducible and positive recurrent if and only if 
 

 0

1 11
.i

ii

λ λ
μ μ

∞

+=

⋅ ⋅ ⋅
< ∞

⋅ ⋅ ⋅∑        (22) 

 
If the birth and death rates are independent of i, i.e. λi = λ and µi= µ, this continuous-time 
Markov chain is positive recurrent if and only if ρ = λ

μ
 is less than one. Then the limiting 

distribution has the form 
 
 ( )1 fori

i i Sπ ρ ρ= − ∈        (23) 
 
and π = (πi) is the unique stationary distribution. Applications of this Markov chain can be 
found in Queueing Systems. 
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