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Summary 
 
A decision is defined as choosing from a set of available alternatives the best one that 
optimizes a set of decision criteria. Decision problems can be quite varied and quite 
complex. An important first step in the solution of a problem is to find an applicable 
solution model. Fortunately, powerful solution models are available to solve most, if not 
all, classes of decision problems. A knowledge of the different classes of problems and 
the variety of techniques that can be used to solve each class of problems will therefore 
be useful. The aim of this article is to provide that knowledge. 
 
A decision problem can be classified based on the number of decision makers, the 
cardinality of available alternatives, the decision criteria, the nature of environment in 
which the decision is to be made, the nature of uncertainty involved and whether it is a 
single or a series of decisions. The classification helps in identifying possible 
difficulties and pitfalls in solving a given class of problems. It also helps to choose a 
suitable solution technique. 
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Axiomatic descriptions of two important decision theories, namely, the Expected Utility 
theory and the Rank-Dependent Expected Utility are provided. Following that a very 
short description of the essentials of Voting Theory is given. The utility theories call for 
the use of a few different solution techniques. In that connection, a short description of 
Decision Trees and Influence Diagrams is given. Some hints about structuring the 
problem, and aggregating probability judgments are also included. 
 
There are a few limitations of decision models. For example, there is no model that can 
tell us what is the correct level of risk aversion in a given situation for a given decision 
maker. Nor can a model tell us how to “surprise” a competitor. 
 
1. Introduction 
 
A decision problem is one in which we have to find the best alternative from a set of 
available alternatives. This statement immediately leads to the question, what exactly is 
the ‘best alternative.’ One way to answer this question is to assume the existence of a 
binary preference relation  on the set of alternatives, A. For a, b ∈ A, a  b denotes 
that the decision maker prefers a to b or is indifferent between them; a ≻  b denotes that 

a is strictly preferred to b; and a ≈  b means that they are equally preferred. The best 
alternative then is the one that is most preferred. That is, if b is the best alternative then 
there is no other alternative in A that is strictly preferred to b. The best alternative exists 
when A is finite and  is a weak order (complete, reflexive and transitive). The 
problem is simple if A is finite and ≽  is a weak order, because it then boils down to a 

simple search. In a typical decision problem ≽  on A is not completely known and 
therefore a solution model is needed. We will assume  is a weak order, though we 
will have occasion to relax that assumption later. 
 
Often a problem can be analyzed better by moving it into a criteria space. For example, 
the choice among available medicines for an illness can be analyzed in the 3-
dimensional criteria space: effectiveness, cost and side effects. Suppose there is a 
criteria space B, such that every alternative a in A can be mapped to a point m(a) in B 
through a measurement function m: A → B. The decision maker may have a preference 
relation ≽  on B that is known completely and is easier to handle mathematically. But an 

important consistency condition has to hold before we can exploit ≽  on B. To 

distinguish the two ≽ ’s on A and B we shall use superscripts, such as A . For 

consistency (or order preservation) between A  and B , we must have  
 

( ) ( )A B
1 2 1 2 1 2, :a a A a a m a m a∀ ∈ ⇔  (1) 

 
The criteria should be chosen carefully so that the consistency condition (1) is satisfied. 
Unfortunately, it is difficult to verify whether (1) holds by checking every pair (a1, a2), 
because the number of alternatives can be large or infinite. We then have no other 
course but to simply believe that (1) holds. Difference in beliefs can lead to lively 
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debates. To illustrate, suppose A is a set of public investment alternatives and the 
criteria space B has just one dimension, namely, the net present value (NPV) of the 
investment. Later it appears that it is possible that two alternatives with the same NPV 
are not equally preferable because one alternative is more harmful to the environment 
than the other. We then have to expand B to include the environmental effects in order 
to satisfy (1). On the other hand, some people may believe that environmental effects 
are irrelevant, at least for the set A in consideration. This could lead to public debates 
about what the relevant criteria are. In such cases, the only solution seems to be to adopt 
what the public debate settles. 
 

When (1) is satisfied, we shall write A B
m
→ . A binary weak order that everyone is 

familiar with is the usual order ≥ on the set of real numbers, ℜ. If we can have a utility 

function u such that B
u

ℜ→ ≥ , then u makes the preferences easily understood and 

handled. But this again requires a consistency condition similar to (1), between B  and 
ℜ≥ , to be satisfied. The condition is: 

 
( ) ( )B

1 2 1 2 1 2, :b b B b b u b u bℜ∀ ∈ ⇔ ≥  (2) 
 
Once again verifying (2) can be impossible.  But unlike the case of (1), (2) tends to be 
on a more formal ground, because B tends to be more formally defined than A. As a 
result, a proponent who wants to convince us that (2) holds could present us with an 
axiomatic proof of (2). Typically, the proponent will posit a set of axioms about B , 
and give a formal proof that (2) follows from those axioms. All that this axiomatic proof 
does is, of course, transfer the belief from (2) to the axioms. But if the axioms are 
appealing as self-evident, we would have a good reason to believe in (2). In the theories 
and models presented later in this article, we will pay special attention to the underlying 
axioms.  
 
A utility function, u, will be enormously useful in converting a decision problem into a 

mathematical programming problem. Note that A B
m u

ℜ→ → ≥  implies A
um

ℜ→ ≥  
where um denotes u(m()). The aim of a typical decision model is to reduce A  to ℜ≥ ; 
that is, attach a number, or utility, to each alternative so that a more preferred alternative 
will have a larger utility. We can then pick the best alternative by looking for the largest 
utility. 
 
Decision problems can be quite varied, complex and daunting. Fortunately, some very 
great thinkers – economists, operations researchers, psychologists, mathematicians and 
philosophers – have developed impressive theories and models that can be applied to 
solve many types of problems. We shall first classify decision problems, often with 
reference to the alternatives space A and the criteria space B. We will then use this 
classification to match decision models to the different classes of problems.  
 
2. A Classification of Decision Problems 
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2.1 The Number of Decision Makers 
 
The first classification is based on how many decision makers there are. In general, the 
problem is simpler when there is only one decision maker than when there are many. 
One important reason for that is Arrow’s Impossibility Theorem (AIT). As the name 
implies, AIT is a negative result. Consider a finite set A of alternatives containing k (> 
2) alternatives and n (>1) decision makers. For each decision maker i, 1 ≤ i ≤ n, let i  
denote that person’s binary preference relation on A. That is, for a1, a2 ∈ A we will write 

1 i 2a a  to denote that person i prefers a1 to a2 or is indifferent between them. AIT 
concerns how we aggregate all the i  to get a group preference relation . Note that 
the only criteria used in this aggregation method are the individual rankings, i , of the 
alternatives. Whether other criteria should be included is an issue we will soon consider. 
 
We can describe AIT as follows. Consider the following rationality conditions on the 
aggregation process. 
 
AIT 1. Completeness: For any input data consisting of A and all the i  on A, the 
aggregation method must produce a  on A. 
 
AIT 2. Positive Association: Suppose we have 1 2a a . Now if some individual i who 
originally had 2 i 1a a  changes her mind to 1 i 2a a  then we must continue to have 

1 2a a . 
 
AIT 3. Independence of Irrelevant Alternatives: Suppose we have 1 2a a . If a third 
alternative a3 is removed from A, and on A\{a3}all the i  remain the same as before, 
then in the new  on A\{a3} we must have 1 2a a . 
 
AIT 4. Sovereignty: For any two alternatives a1 and a2, there must be some input data of 
individual rankings i  on A for which we get 1 2a a . 
 
AIT 5. Non-Dictatorship: For any individual i, it should not be the case that 

1 i 2 1 2a a a a⇒  irrespective of how the others rank a1 and a2. 
 
Taken individually, each of the above conditions is quite appealing as a rationality 
requirement and appears to be easily satisfiable. But, Kenneth Arrow proved that it is 
impossible to satisfy all of them in any aggregation method. Later, others showed that 
relaxing one of more of the five conditions does not lead to efficient aggregation 
methods.   
 
Given these negative results, we naturally look for aggregation methods that use 
additional information, such as the intensity of preferences.  For example, we could 
define for each individual i a utility function ui: A → ℜ such that 

( ) ( )1 2 1 2i i ia a u a u a⇔ ≥ , and similarly define a group utility function u = u(u1, u2, 
…, un) to reflect the aggregated preference. It has been shown that the additive group 
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utility  
 

1
( ) ( )

n

i i
i

u a k u a
=

= ∑  (3) 

 
is the only aggregation method that would  
 
1. satisfy AIT 1 – AIT 5 that are re-written in terms of u and ui, and  
2. be applicable per the expected utility theory (described later). 
 
While it is remarkable that a simple additive form is what would work for u, it is also 
troublesome that this u makes a very explicit form of interpersonal comparisons of 
utility. To wit, the ki values used in (3) can be controversial because they determine the 
trade-off between individual utilities. There can easily be disagreement among the 
individuals about these ki values. 
 
Another issue in group decision making is whether the individuals are cooperative or 
not. Cooperation can eliminate certain fears of an individual about adverse actions by 
others, and thus will increase the alternatives available to the group.  As a result, it can 
improve the overall utility of the best choice. The aggregation of preferences we 
discussed above obviously requires cooperation in that the individuals have to agree to 
the result of the aggregation. Non-cooperation can give rise to unpredictable 
competitive behavior of the individuals. Finding the best group decision, allowing for 
unpredictable competitive behavior, is difficult. 
 
2.2 The Number and Nature of the Criteria 
 
The number of dimensions of the criteria space B is relevant when it comes to finding a 

utility function u such that B
u

ℜ→ ≥ . Also, each dimension can be discrete or 
continuous. The simplest case is when the number of dimensions is 1, as it avoids 
having to estimate tradeoffs between criteria. A common uni-dimensional criterion is 
money, because anything fungible can be reduced to money. An advantage of reducing 
the dimension(s) to money is that a whole slew of financial techniques can be brought to 
bear on the problem. When a criterion is not fungible, such as the health of the decision 
maker, we are on a different ground. Techniques such as portfolio formation, hedging 
through options & futures are not feasible or of only limited use. Furthermore, market 
forces such as price and interest rate are absent.  
 
When B = ℜn, u is called a multi-criteria utility function. The simplest such function is 
the additive u where for x = (x1, x2, …, xn) ∈ B, 
 

1
( ) ( )

n

i i i
i

u x k v x
=

= ∑  (4) 

 
where ki is the weight given to the ith criterion and all vi: ℜ → ℜ are defined so that 
vi(xi) is the utility contributed by xi amount of the ith criterion. An additive utility 
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function is obviously preferable since it will simplify finding the optimal decision. 
 
Can we always find a set of additive criteria for a given problem? Surprisingly, almost 
always such a set exists, but, alas, we may not be able to find it. A theorem due to 
Kolmogorov proves that if a criteria space C, a measurement function m’ and a 

continuous u’ exist such that A C
m u′ ′

ℜ→ → ≥  then there exist a criteria space B, a 
measurement function m, and an additive and continuous utility function u such that 

A B
m u

ℜ→ → ≥ . Thus, the only prerequisite for additive criteria is the existence of 
some set of criteria with respective to which there exists a continuous utility function. 
Since continuity is a very weak condition, we can say that for almost all decision 
problems there exists a set of additive criteria. Although the proof of Kolmogorov’s 
theorem is constructive, the construction is too mathematical to prescribe a practical 
method for constructing an additive set of criteria. But the theorem is encouraging, 
because the same theorem forms the basis for the impressive abilities of neural 
networks. Thus, it points to the possibility that we can think through a problem, use our 
experiences and come up with an additive set of criteria. 
 
Although constructing a set of criteria can be difficult, given a set of criteria we can 
easily check to see if it is additive. A necessary condition for additivity is preferential 
independence. The condition can be described as follows. Let I ⊆ {1, 2, …, n} and let ΔI 
∈ ℜn denote a vector such that Δi = 0 for i ∉ I and Δi ≠ 0 for i ∈ I. Preferential 
independence requires 
 

( ) ( )I I B I B, , and :x y B I x x y y∀ ∈ Δ + Δ ⇒ + Δ  (5) 

 
This is a strong condition, and often may not be satisfied. As a result, u will have to be 
non-additive. The class of non-additive functions is large and varied. A few examples 
can be given. 
 
One possible case is interaction among the dimensions. Interactions can be taken care of 
by including interaction terms which are products of the different dimensions. For 
example, with two dimensions, we can have 
 
( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 12 1 1 2 2u x k u x k u x k u x u x= + +  (6) 

 
With more dimensions, we may have to have many more interactions terms. 
 
The next is the maximin function where the problem is to maximize the minimum 
among a set of values. Rawls’s Difference Principle which equates the welfare of a 
society to that of the worst-off individual in that society is a case in point. The utility 
function then is 
 
( ) ( )Mini i iu x u x⎡ ⎤= ⎣ ⎦  (7) 

 
An extension of the maximin function is to combine it with the additive case to get what 
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is called the min-sum function. An example is 
 
( ) ( ) ( ) ( )Min ,1 1 2 2 3 3u x u x u x u x⎡ ⎤= +⎣ ⎦  (8) 

 
The case (7) means that all the dimensions are complements, such as the links in a chain, 
implying a chain is only as strong as the weakest link. Case (8) means that dimensions 1 
and 2 are complements, and dimension 3 is a substitute for dimensions 1 and 2 together. 
In (4), all dimensions are substitutes for one another. Complements and substitutes can 
combine in complex ways giving rise to a min-sum function that needs quite a few 
terms. 
 
Our final example is the lexicographic case where there is a hierarchy among the 
dimensions, and with respect to that hierarchy the preference is lexicographic. For 
example in a rescue operation, the number of lives saved will be hierarchically superior 
to the amount of materials saved in that no amount of material saved can compare to a 
life saved. The preference then is lexicographic. A combination of lexicographic and 
maximin preferences yields the leximin preference. The goal in the leximin case is to 
maximize the minimum in the hierarchically first dimension and then that of the next 
dimension and then the next, and so on. 
 
The utility function defined on the criteria space in one of the above forms can serve as 
the objective function in a mathematical programming problem that is designed to find 
the best alternative. 
 
2.3 The Temporal Aspects of Decisions 
 
Another aspect of the decision problem that is relevant to the solution process is the 
timing of decisions. If the decision is just one choice to be made at a given time, then 
that is the simplest case. If several related decisions have to be made serially over a 
period of time, in stages, then we have a more complex problem. One reason for the 
complexity is that the number of alternatives available increases exponentially with the 
number of stages. For example if a problem has s number of stages and at each stage n 
alternatives are available, we then have to examine ns total alternatives. 
 
Additional issues arise in serial decisions in the form of dynamic consistency. For 
example, the best sequence of decisions, given the decision maker’s preferences at the 
start may be to make the sequence of choices c1, c2, … cs at the s number of stages. But 
after c1 is made and depending on events that happen before the next choice, it is quite 
possible that the decision maker’s preferences change. And according to the new 
preferences c2, c3, … cs may not be optimal sequence anymore. Suppose the decision 
maker keeps changing the remaining sequence at will at each stage, she can end up with 
a very bad final position. How do we solve this problem? A little thought reveals that if 
we treat the decision maker at different times as different individuals, then the problem 
resembles a group decision problem. That means we need to make controversial 
“interpersonal” comparisons to find the best sequence. Even after we manage to do that, 
it is not clear how the individual would stick to the best sequence. (Recall the legend 
about Ulysses and the sirens.) Since we have so much difficulty with just one 
individual, we are bound to have much more difficulties with a serial group decision 
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problem. It will call for a lot of coordination among the group members. 
 
2.4 The Nature of Uncertainty 
 
Almost every decision involves uncertainties which may arise due to different types of 
reasons. Let us see some of them. 
 
First the uncertainty could be due to our ignorance about the future. We cannot predict 
the outcome of a coin toss. Often we face a more complex future event such as the 
outcome of a sports event, the future path of a storm, tomorrow’s weather, next week’s 
demand for cars or next month’s interest rate. Sometimes the uncertainty exists because 
of lack of necessary information. For example, we may not know whether there is oil at 
a proposed drilling site. Some other times the uncertainty is due to competitive 
behavior. For example, a business manager implementing a marketing strategy may not 
know what her competitor might do in the meantime.  
 
Among the above types of uncertainties, the outcome of a coin toss is the simplest to 
handle. We can assign a probability of 0.5 to each outcome if we believe the coin is fair; 
or we can toss the coin a sufficient number of times and assign the probabilities based 
on the frequencies observed. The hardest case is competitive behavior. A competitor we 
face mostly wants to surprise us; thus our probability assignment to his possible actions 
can easily go wrong. Only in some restricted circumstances, as in some forms of 
idealized games, will we be able to assign probabilities to a competitor’s actions. 
 
In other intermediate cases, such as the path of a severe storm, it is still hard to assign 
probabilities for all possible outcomes. One way to do it is to aggregate the opinions of 
experts. Depending upon how important the decision is, certain minimum number of 
experts must be involved.  
 
For important public decisions, it is common to use as many as 20 experts. Many 
different methods of aggregating expert opinions are available. The simplest and the 
most common method is to take the weighted average of the probabilities, with weights 
determined by the decision maker(s). 
 
When probabilities cannot be assigned readily to the uncertain events, due to whatever 
reason, we say that there is ambiguity. It has been empirically shown that besides risk 
aversion, an average person also exhibits ambiguity aversion. It may therefore be 
necessary to allow for ambiguity aversion while prescribing a solution. 
 
- 
- 
- 
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