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Summary 
 
This chapter reviews the early (1885 1975− ) and more recent (1975 2007− ) history of 
dynamical systems theory, identifying key principles and themes, including those of 
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dimension reduction, normal form transformation and unfolding of degenerate systems. 
Some recent extensions and applications are also sketched.  

1. Introduction 

Dynamical systems theory (also known as nonlinear dynamics or chaos theory) 
comprises a broad range of analytical, geometrical, topological, and numerical methods 
for analyzing differential equations and iterated mappings. As a mathematical theory, it 
should perhaps be viewed as a “normal” development within mathematics, rather than a 
scientific revolution or paradigm shift (cf. [Kuhn, 1970]), as some popular accounts 
have claimed [Gleick, 1987]. However, crucial motivations and ideas have entered this 
area of mathematics from the applied sciences, and a still-accelerating stream of 
applications driven by recent developments in dynamical systems theory began in the 
last third of the 20th century. See [Aubin and Dahan Dalmedico, 2002] for a “socio-
historical” analysis which discusses such extra-mathematical influences and describes 
the confluence of ideas and traditions that occurred in Western Europe and the US in the 
turbulent decade around 1970.  
 
This chapter provides a brief and possibly idiosyncratic survey of the development of 
dynamical systems theory from approximately 1885 through 1965-75, with some 
comments on more recent work and central themes that have emerged. I focus on finite-
dimensional, deterministic systems: ordinary differential equations and iterated 
mappings; the important topic of ergodic theory [Katok and Hasselblatt, 1995] is 
mentioned only in passing. There is also a growing qualitative theory of stochastic 
dynamical systems, see, e.g. [L. Arnold, 1974, L. Arnold 1998]. This article is not a 
tutorial: technical details and precise statements are largely omitted, and the reader is 
referred to the many textbooks and monographs on dynamical systems, examples of 
which are cited in Section 5. Otherwise, the bibliography emphasizes original 
references, early review articles, and papers that were influential in directing the field 
(sometimes long after their publication). The mathematical viewpoint taken here does 
not intend to downplay important extra-mathematical motivations and contributions, 
some references to which are made, but to do them justice would demand a separate 
article.  

2. The Qualitative Theory of Dynamical Systems 

I start by declaring my belief that “chaos theory” lacks the status of, say, the quantum or 
relativity theories, and that “nonlinear science” is not a science in the manner of 
physics, chemistry or biology. Dynamical systems theory neither addresses specific 
phenomena nor proposes particular models of (parts of) reality; it is, rather, a loosely-
related set of methods for analyzing ordinary differential equations (ODEs) and iterated 
mappings, the canonical problems addressed having the forms: 
 

( ) ( ) ( )1 2 1 1 1or 1 ( ) ( )j j n k j j n kx f x x … x … x l F x l … x l …μ μ μ μ= , , , ; , , , + = , , ; , ,  (1) 
 
where 1 nx … x, ,  are state variables and 1 k…μ μ, ,  are external control parameters, usually 
regarded as fixed for the purpose of solving (1) to obtain orbits 

1 2( ) ( ( ) ( ) ( ))nt x t x t … x t= , , ,x  or { } 0
( )

l
l ∞

=
x . The methods emphasize the study of all orbits 
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or solution curves of (1), the dependence of the set of solutions or phase portrait on the 
parameters, and the description of qualitative properties such as the existence of 
periodic solutions, rather than derivation of explicit closed form expressions or 
approximations. Very few nonlinear ODEs or maps can be solved exactly, but as noted 
below, much can be deduced from the study of systems linearized around fixed points or 
other invariant sets. For example, the linearization of the ODE of (1) about a fixed point 

1 2( )n…x x x= , , ,x , where 1 2( ) 0njf …x x x, , , =  for 1j … n= , , , is 
 

( )ξ ξ= Df x  (2) 
 
where ( )Df x  is the n n×  Jacobian matrix of first partial derivatives of the vector field 

1 2( )nf f … f= , , ,f , evaluated at x . This constant coefficient linear system is easily 
solved by assuming an exponential form exp tξ λ= v  and computing the eigenvalues 

jλ  and eigenvectors jv  of ( )Df x . Thus the power of linear analysis can be locally 
brought to bear on a nonlinear system.  
 
The qualitative theory of dynamical systems (to give it its full title) is a mathematical 
theory largely built on the pillars of analysis, geometry, and topology, the first and last 
of which, in turn, had their origins in Newtonian mechanics. While claims of scientific 
revolution may be exaggerated, the increasing reach of dynamical systems theory 
beyond the mathematical sciences is a fact. Its goal of classifying dynamical systems 
provides a unifying structure across a wide range of applications: it does not help one 
formulate models per se, but knowing the nature of some creatures in the mathematical 
jungle is clearly useful. However, while the theory might allow one to prove that models 
of the solar system, weather, or the world economy are chaotic (or stable), the validity 
of conclusions drawn regarding asteroid impacts, hurricanes or stock-market crashes 
will depend on the quality of the models themselves. 
 
2.1. Early History: Homoclinic Points and Global Behavior 
 
In naming the next three subsections after five major contributors to the theory, I wish 
primarily to provide a mnemonic device, not to denigrate the collaborative process of 
mathematical discovery and invention. 
 
2.1.1. Poincaré and Birkhoff 
 
The modern theory of dynamical systems derives from the work of H.J. Poincaré (1854-
1912) on the three-body problem of celestial mechanics [Poincaré, 1892, 1893, 1899], 
and primarily from a single, massive and initially-flawed paper [Poincaré 1890]. In this 
paper, which won a prize celebrating the 60th birthday of King Oscar II of Sweden and 
Norway, Poincaré laid the foundations for qualitative analysis of nonlinear differential 
equations, and began to develop a coherent set of mathematical tools for their study. His 
paper describes the use of first return (Poincaré) maps for the study of periodic motions; 
defines stable and unstable manifolds; discusses stability issues at length, develops 
perturbation methods, and includes the (Poincaré) recurrence theorem. Of particular 
relevance in the present context, while correcting the proofs, Poincaré realised that 
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certain differential equations describing “simple” mechanical systems with two or more 
degrees of freedom were not integrable in the classical sense, due to the presence of 
“doubly-asymptotic” points, now called homo- and heteroclinic orbits. Moreover, he 
saw that these orbits had profound implications for the stability of motion in general, 
and that his previous belief that a version of the restricted three-body problem of 
celestial mechanics had only stable behavior, was false. In December 1889 and January 
1990 he created a perturbation theory to detect what is now called chaos, and provided 
the first explicit example of it [Barrow-Green, 1997, Holmes, 1990]. 
 
Following Poincaré’s work, J. Hadamard (1865-1963) considered the dynamics of 
geodesic flows, but the next major thrust was due to G.D. Birkhoff (1884-1944), who 
early in his career had proved Poincaré’s “last theorem” on fixed points of annulus maps 
[Birkhoff, 1913]. In a book on two degree-of-freedom Hamiltonian systems [Birkhoff, 
1927] that still bears reading, Birkhoff showed that, close to any homoclinic point of a 
two-dimensional mapping, there is a sequence of periodic points with periods 
approaching infinity. He subsequently proved that annulus maps having points of two 
distinct periods contain complex limit sets separating their domains of attraction 
[Birkhoff, 1932], thus providing a key clue for Cartwright and Littlewood in their 
studies of the van der Pol equation (see below). 
 
2.1.2. Andronov and Kolmogorov 
 
While Birkhoff was working in the U.S., A.A. Andronov (1901-1952), a student of L. 
Mandelstam (1879-1944), established a strong group in dynamics in the U.S.S.R at 
Gorki (Nizhni-Novgorod), and he and L.S. Pontryagin introduced the key idea of 
structural stability under the name “systèmes grossieres” (coarse systems) [Andronov 
and Pontryagin, 1937]. This notion, now a central theme of the theory, asks what 
properties are necessary and sufficient for the qualitative behavior of the flow 
comprising all solutions of a given ODE to survive a small perturbation to the vector 
field defining it. Here “survive” implies that the flows of the original and perturbed 
system must be topologically equivalent (homeomorphic). While subtle technical 
questions remain on function space topologies and norms that define “small” and 
“equivalent,” this approach launched the study of structurally stable systems, and of 
degenerate or bifurcation points at which arbitrarily small perturbations can produce 
qualitatively different behaviors [Andronov et al., 1971]. The classification and 
universal unfoldings of such points provided for the first time lists of behaviors that one 
might expect when studying families of ODEs or maps depending on one or more 
(control) parameters. In the special case of gradient systems (vector fields derived from 
a potential function), this culminated in R. Thom’s (1923-2002) catastophe theory 
[Thom, 1975]. Thom’s book, and the work of Christopher Zeeman (b. 1925) [Zeeman, 
1977] led the way in exporting previously-abstract mathematical ideas to the sciences at 
large, e.g. in [Chillingworth, 1976] and [Poston and Stewart, 1977], albeit not without 
controversy over the relevance of generic and universal ideas to specific problems in 
what were then new areas for mathematics [Sussmann and Zahler, 1978, Smale, 1980].  
 
Andronov’s work was motivated by radio and electronic applications, and it led to 
further detailed studies of specific nonlinear oscillators, summarized in a classic text 
[Andronov, Vitt and Khaiken, 1966]. (Vitt’s name was missing from the title page of 
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the first (1937) Russian edition, appearing only in the second edition with the enigmatic 
prefatory note that it had been omitted “by an unfortunate mistake.” The omission was 
due to Vitt’s death in a prison camp in Kolyma, Siberia in the winter of 1936-7.1) The 
book focused on planar ODEs, starting with conservative (Hamiltonian) systems, 
moving on to dissipative systems and discussing bifurcations of fixed points and limit 
cycles, including global (homoclinic) bifurcations. Unlike much of the Western 
mathematical literature, it contained explicit and practical examples. (For information 
on Andronov’s work in control theory and the Mandelstam school in mathematical 
physics, see http://ict.open.ac.uk/reports/1.pdf.) Following Andronov’s early death in 
1952, his widow Leontovich continued to lead the Gorki group and two important early 
texts were produced [Andronov et al., 1971, Andronov et al., 1973]. 
 
A more abstract approach was developed from the mid 1930’s in the “Moscow school,” 
gaining attention outside the U.S.S.R. via the translation of [Nemytskii and Stepanov, 
1960], originally published in 1946, with an introduction by S. Lefshetz, who had 
himself written a key text a few years earlier [Lefschetz, 1957]. Here the first clearly-
defined strange attractor – the solenoid – was described. The work of A.N. Kolmogorov 
(1903-1987), D.V. Anosov (b. 1936), V.I. Arnold (b. 1937) and Ya. G. Sinai (b. 1935) 
flourished in the 1950-60’s, largely in the context of Kolmogorov’s seminar. Important 
work was done on ergodic theory [Sinai, 1966], geodesic flows [Anosov, 1967] and 
billiards [Sinai, 1970], using Kolmogorov’s idea of K-systems. Some of this was 
motivated by S. Smale’s visit to Moscow in 1961, during which he met Anosov, Arnold 
and Sinai and told them of his discovery that structurally stable systems with infinitely 
many periodic orbits could exist (the Smale horseshoe: see below). While Russian 
mathematicians were somewhat isolated at the height of the cold war in the 1950-80s, 
and were rarely able to travel outside the Soviet Bloc, they eagerly sought contacts with 
the West, and visits such as those of Smale and Moser (see below), and the International 
Congress of Mathematicians held in Moscow in 1966 (which Smale also attended), 
helped maintain communications with European and American colleagues. Those able 
to visit Moscow found a hospitable welcome among their fellow mathematicians.  
 
During this period M.M. Peixoto (b 1921) generalized the Andronov-Pontryagin results 
to flows on two-dimensional manifolds [Peixoto, 1962]. He proved that a flow on a 
compact two-dimensional manifold is structurally stable if and only if it has a finite 
number of fixed points and periodic orbits, all of which are hyperbolic, there are no 
orbits connecting saddle points, and the non-wandering set consists of fixed points and 
periodic orbits alone. 
 
2.1.3. Smale’s Topological Viewpoint 
 
S. Smale (b. 1930) brought topological ideas to these problems in the late 1950’s and 
began to generalize to 2n >  dimensions, defining gradient-like flows that are now 
called Morse-Smale systems. Such a flow (or map) has a finite set of fixed points and 
periodic orbits, all of which are hyperbolic and all of whose stable and unstable 
manifolds intersect transversely, but no other nonwandering or recurrent points. Smale 

                                                 
1I am indebted to an article by C. Bissell in the Times Higher Educational Supplement 
of January 28th, 1994 for this information. 
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conjectured that a system is structurally stable if and only if it is Morse-Smale. N. 
Levinson subsequently drew Smale’s attention to a short paper on the periodically-
forced van der Pol equation [Cartwright and Littlewood, 1945]. Levinson had worked 
on a simplified version of the problem [Levinson, 1949], and he suggested that it might 
provide a counterexample in the form of a structurally stable ODE with infinitely many 
periodic orbits. This led to Smale’s creation of the horseshoe map in 1960, allegedly on 
the Leme beach of Rio de Janiero, while visiting Peixoto’s Institute of Pure and Applied 
Mathematics. The story is recounted in [Smale, 1980], in the biography of [Batterson, 
2000], and in [Diacu and Holmes, 1996]. The contributions of Cartwright and 
Littlewood are less well known: see [Cartwright, 1974, McMurran and Tattersall, 1996]. 
 
Smale’s work appeared after a considerable delay [Smale, 1965], and became widely 
known only after an extensive survey article was published [Smale, 1967]. J. Moser 
(1928-1999) subsequently gave a beautiful exposition of the horseshoe [Moser, 1973], 
providing explicitly-testable criteria to prove its presence in two-dimensional maps and 
explaining clearly how the presence of dense orbits precludes the existence of additional 
integrals of motion. This implies that the problem for which King Oscar’s prize was 
awarded is essentially insoluble. A pictorial account of the horseshoe can be found in 
[Shub 2005]. 
 
A footnote in [Cartwright and Littlewood, 1945] remarks that the authors’ “faith in 
[their] results was at one time sustained only by the experimental evidence that stable 
sub-harmonics of two distinct orders did occur,” referring to [van der Pol and van der 
Mark, 1927] and (implicitly) to [Birkhoff, 1932]. Smale was almost certainly ignorant 
of this work and of [Poincaré, 1890], but in proving that diffeomorphisms containing 
transverse homoclinic points possess nearby hyperbolic invariant sets on which the 
dynamics is conjugate to a shift on a finite alphabet of symbols, he completed the story 
that Poincaré had begun, connecting ODEs and deterministic maps with probabilistic 
Markov processes and showing that, in a deep sense, their orbits are indistinguishable. 
This is now referred to as the Smale-Birkhoff homoclinic theorem [Guckenheimer and 
Holmes, 1983]. Although significant progress was made on the piecewise-linear 
Levinson version [Levi, 1981] and the existence of strange attractors and invariant 
measures has been proved for related problems [Wang and Young, 2002], the van der 
Pol equation remains a research topic, e.g. [Guckenheimer et al., 2002, Bold et al., 
2003]. 
 
2.1.4. Perturbations and Applications 
 
Much of the work described above, including that of Peixoto and Smale, was 
topological in nature. Krylov and Bogoliubov developed analytical perturbation and 
averaging theories for nonlinear oscillation problems [Krylov and Bogoliubov, 1947]; 
these were employed extensively in Andronov’s group, and generalized by [Hale, 1969] 
and others. Such methods were then used to prove the existence of transverse 
homoclinic orbits to periodic motions in periodically-forced oscillators [Melnikov, 
1963] and in two- and three degree-of-freedom Hamiltonian systems [Arnold, 1964]. 
This provided the final link in a chain of methods and results that allows one to prove 
the existence of chaotic invariant sets in specific ODEs. Since then, “Melnikov’s 
method” has been extended to multi- and infinite-dimensional systems including partial 
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differential equations (PDEs) [Wiggins, 1988, Holmes and Marsden, 1981], and related 
ideas have been used to approximate Poincaré return maps near homoclinic orbits to 
equilibria and find similar chaotic sets [Silnikov, 1965]. In a return to the origins of 
Poincaré’s work, it has been suggested that heteroclinic connections among unstable n -
body orbits might provide routes for low energy space missions [Koon et al., 2000]. 
 
The work of Lorenz (b. 1917) on a three-dimensional ODE modeling Rayleigh-Bénard 
convection was done almost independently of that described above, although in 
presenting his discovery of sensitive dependence on initial conditions, [Lorenz, 1963] 
appealed to Birkhoff’s work and (thanks to a perceptive reviewer) also to that of 
[Nemytskii and Stepanov, 1960]. But not until 1971, when Lorenz heard Ruelle speak 
on the proposal of [Ruelle and Takens, 1970] that structurally stable strange attractors 
might describe turbulence, were “dynamical” connections made between the 
meteorologists and mathematicians [Lorenz, 1993, Ruelle, 1991]. An earlier extra-
mathematical discovery had taken place in 1961 when Y. Ueda, a graduate student in 
Electrical Engineering at Kyoto University, found motions that were neither periodic 
nor quasiperiodic in analog computer simulations of a periodically-forced van der Pol-
Düffing equation. These solutions were mentioned as “complicated phenomena,” in 
Ueda’s PhD thesis, but remained otherwise unpublished until considerably later 
[Hayashi et al., 1970, Ueda et al., 1973], allegedly due to reservations of Ueda’s 
advisor, C. Hayashi. For more on Ueda’s work, see [Ueda, 2001]. 
 
- 
- 
- 
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