
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

HISTORY OF MATHEMATICS – Measure Theories And Ergodicity Problems - Jean - Paul Pier 

©Encyclopedia Of Life Support Systems (EOLSS) 

MEASURE THEORIES AND ERGODICITY PROBLEMS 
 
Jean - Paul Pier 
Luxembourg University Center, Luxembourg 
 
Keywords: measure, invariance, ergodic. 
 
Contents 
 
1. Introduction 
2. Measure theories and probability 
3. Invariant measures 
4. Ergodicity and dynamical systems 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
Measure concepts range among those mathematical theories having gone through a very 
long history. After the classical period they were often superseded by integration 
theories, to which they are obviously linked directly. But they never abandoned a 
specific pace. New horizons opened around 1932-1933 when Haar extended Lebesgue’s 
integration theory over locally compact groups, and Kolmogoroff formalized 
Probability Theory rigorously. 
 
The history of recent measure theories told in this chapter concentrates on abstract and 
concrete situations. 
 
Ergodicity stemmed from rather different origins: The necessity of investigating 
qualitative solutions of differential equations recommended by Poincaré; the kinetic 
theory of gases pushed ahead by Boltzmann; the structure of surface transformations 
examined by Birkhoff. Nowadays ergodicity stands as an independent branch of 
mathematics, but also more and more connected to various other sciences.  

1. Introduction 

Since ancient time measures of lengths, surfaces, etc. have been performed with a view 
towards evaluations. The measurements should guarantee a certain permanence of the 
results, independent of transfers, in particular translations or rotations. 
 
For Euclid, all objects which can be positioned to coincide, are equal. 
 
Exploiting this principle it was possible for Greek mathematicians to obtain or verify, 
by ad hoc decompositions, lengths of segments, areas of polygons, volumes of 
polyhedra etc. 
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Later Greek methods were improved, thanks to tightening of exhaustion procedures, the 
methods developed by Gregorius of Saint-Vincent, Bonaventura Cavalieri, and 
forerunners of the invention of (infinitesimal) Calculus. 

Of course Isaac Newton and Gottfried Wilhelm Leibniz are to be credited for having 
produced brand new ideas on the subject, for instance by performing integrations in 
view of the determination of areas. 
 
Measure theories will often be naturally linked to integration theories, via the formal 
identification 
 

1 ( ) ( ) ( )A x dm x m A=∫  

 
with respect to a measure m  and 1A  being the characteristic function of A , i.e., 
1 ( ) 1A x =  or 0  whether x A∈  or x A∉ .  
 
The first widespread monograph on abstract measure theories was published by Paul 
Halmos in 1950; it presents a very comprehensive introduction to these themes and 
explains the fundamental properties leading to applications in mathematical analysis. 

2. Measure Theories and Probability 

In 1892 Camille Jordan defined an abstract measure on n  relying closely on ancient 
Greek methods. 
 
With respect to modern language a function is Riemann integrable if and only if its 
discontinuity points form a set of measure zero. 
 
Hence the study of Riemann’s integration theory raises the question about the 
importance of the size of the set of discontinuity points for a Riemann integrable 
function. 
 
Otto Stolz and Carl Gustav Harnack introduced the pertinent ideas on . Georg Cantor 
extended the problem on n . If E  is a bounded subset of n  and 0ρ > , let ( )V ρ  be 
the neighborhood of E  consisting of the points in n  situated at a distance at most ρ  
from E . Now the ‘measure’ of E  is the lower limit of the ‘volumes’ of ( )V ρ . 
 
The measure of any subset is the measure of its closure. So with respect to the 
definitions the measure of the union of two disjoint subsets may be strictly less than the 
sum of the measures of these subsets. 
 
Cantor is also able to announce that an open subset of  is the countable union of 
mutually disjoint open intervals. 
 
Émile Borel, not trying to approach a set from above, chooses for the measure of an 
open subset of  the sum of the lengths of its intervals. Then he introduces the class of 
the so-called Borel subsets: Starting from the class O  of open subsets, he iterates 
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countably many operations U V∪  and \U V , with U V, ∈O . To the whole class he 
attributes the ‘complete additivity’, the ‘countable additivity’, i.e., if a sequence is 
formed by pairwise disjoint Borel subsets, then the measure of the union of these 
subsets equals the sum of the measures of the subsets. 
 
After the introduction of Borel sets Henri Lebesgue explains the motivations for his 
studies in his 1902 thesis.  
 
“We want to attach to every bounded subset its measure satisfying the following 
conditions: 
 
1. There exist sets having measure nonzero. 
2. Two sets that are equal [i.e. by transferring one of them, one may have them 

coinciding]. 
3. The measure of a finite or countable infinity of sets, without common points, is the 

sum of the measures of these sets.  
 
We are going to solve that measure problem only for the sets that we will call 
measurable” (1902, p. 255-256). 
 
Actually Lebesgue had announced his results in a note to the Comptes Rendus of the 
French Academy of Sciences by April 29, 2001. That achievement may be considered to 
be the earliest important mathematical fact of the XX century. 
 
In his 1904 Leçons sur l’intégration et la recherche des fonctions primitives Lebesgue 
imposes the following conditions on his integral for real-valued bounded functions on 
the line: 
 

(1) For all a, b, h, one has ( ) ( )
b b h

a a h
f x dx f x h dx

+

+
= −∫ ∫ ; 

(2) For all a b c, , , one has ( ) ( ) ( ) 0
b c a

a b c
f x dx f x dx f x dx+ + =∫ ∫ ∫ ; 

(3) [ ( ) ( )] ( ) ( )
b b b

a a a
f x x dx f x dx x dxϕ ϕ+ = +∫ ∫ ∫ ;  

(4) If 0f ≥  and b a≥ , then ( ) 0
b

a
f x ≥∫ ;  

(5) 
1

0
1 1dx =∫ ;  

(6) If ( )nf x  converges increasingly to ( )f x , the integral of ( )nf x  converges to the 
integral of ( )f x . 
 
The first five conditions are independent and Lebesgue wonders whether that could be 
the case also for (6). He observes that a Riemann integrable function satisfies (1) to (6) 
and the Riemann integral is then the only solution. 
 
As it will suffice to consider characteristic functions, Lebesgue brings the problem 
down to the determination of a number ( ) 0m E ≥  for any bounded subset E , the 
measure of E , satisfying the following conditions:  
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(1’) Two subsets that are equal (i.e., by transferring one of them, it may be positioned to 
coincide  with the other one) admit the same measure [Invariance of the measure];  
(2’) The union of a finite or countably infinite number of pairwise disjoint subsets 
admits as its  measure the sum of the measures of the subsets [countable additivity of 
the measure];  
(3’) the measure of the interval [0 1],  is 1 [normalization of the measure]. 
 In this setup (3’) replaces  (5), (2’) comes out of (3) and (6), (1’) is (1). If 
a b< , the  measure of the interval [ ]a b,  is  b a− .  An arbitrary bounded set E  
may be included  into a finite or countably infinite  number of intervals; the set 
of the sums of lengths of  these intervals admits a lower limit  called outer measure 

( )em E  of E . For a segment  (bounded closed interval) containing E , 
 ( ) ( )em A m A E−  is the inner measure ( )im E   of E . If ( ) ( )e im E m E= , the 
subset E  is  called measurable; the common value is the  measure ( )m E  of E  
verifying (1’), (2’), (3’). 
 
All Borel sets belong to that class, but the latter is much wider. A Lebesgue measurable 
set is the union of a Borel set and a set of measure 0. 
 
Borel had these comments on his own contribution:  
“The sets for which one may define a measure by the preceding definitions will be 
called measurable by us, although we won’t claim that it is not possible to attribute 
measures to other sets; but such a definition would be useless; it could even be harmful 
in case it would not guarantee that the measure keeps the fundamental properties we 
have provided in our definitions” (1898, p. 48). 
 
General abstract versions of Lebesgue’s procedure were performed by Johann Radon 
and Maurice Fréchet. 
 
A measure space ( )E μ, ,S  is defined for a set S  of subsets in E  which is closed with 
respect to unions, intersections, set subtractions, and a measure μ . For a measurable 
function f  on E  the inverse image of any measurable set must be an element of S . 
 
Bourbaki describes his views: 
“The new theory [of Lebesgue] had still to be popularized, making it a mathematical 
instrument useful for common purposes, whereas the majority of mathematicians, 
around 1910, went on seeing in Lebesgue’s integral an instrument of very high 
precision, to be handled with care, to be used only for research of extreme subtlety and 
extreme abstraction. That was Carathéodory’s work, in a book remaining a classic for a 
long time, and did enrich Radon’s theory by numerous original remarks. 
 
But with that book also for the first time the notion of integral is superseded by the 
notion of measure, that had been for Lebesgue just a technical help.” (1960, p. 257-
258). 
 
Carathéodory defines an outer measure on q  via five axioms. 
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(I) The function μ∗  is defined over all subsets of q  and with values in + . 
(II) If qB A⊂ ⊂ , then ( ) ( )B Aμ μ∗ ∗≤ .  
(III) If ( )nA  is a finite or countably infinite sequence of subsets in R q , one has 

( ) ( )n n nn
A Aμ μ∗ ∗∪ ≤∑  in case the latter series is convergent. 

 
The subset A  is called measurable if, for any subset W ,  
 

( ) ( ) ( ( ))W A W W A Wμ μ μ∗ ∗ ∗= ∩ + ∩ ;  
 
in that case let ( ) ( )A Aμ μ∗= .  
 
Carathéodory establishes a collection of fundamental properties deduced from the 
preceding definitions, stability properties of the class of measurable subsets. 
 
He introduces a supplementary condition. 
(IV) If 1 2

qA A, ⊂  and 1 2inf{ ( ) } 0d x y x A y A d, ; ∈ , ∈ > ,  denoting the distance in q , 
then  
 

1 2 1 2( ) ( ) ( )A A A Aμ μ μ∗ ∗ ∗∪ = + .  
 
Finally the theory is completed by a last condition: 
(V) The outer measure of a subset A  is the lower limit of the numbers ( )Bμ , B  
running through the set of measurable subsets containing A . The inner measure of A  is 
defined by  
 

( ) ( ) ( )A A B Aμ μ μ∗ ∗
∗ = − ,  

 
where A B⊂ . The subset A  is measurable if and only if ( ) ( )A Aμ μ∗

∗ = .  
 
As early as 1924, Alexander Khinchin, collaborator of Kolmogoroff, writes:  
“The leading idea […] has been […] to range the fundamental concepts of probability 
theory, which so far had been considered to be quite specific, along a natural way in the 
row of the general formulations adopted for concepts in modern mathematics. Before 
the constitution of Lebesgue’s measure and integral theory this task was quite hopeless. 
After Lebesgue’s explorations the analogy between the measure of a set and the integral 
of a function as well as the mathematical expectation of a random object was at hand.” 
(1924, p. iii). 
 
During a first stage Andreï Kolmogoroff considers for the set E  a set S  of subsets in 
E  which is closed with respect to unions, intersections, and set subtractions. In case 
E ∈S , the probability (measure) is a mapping [0 1]P : → ,S  such that ( ) 1P E =  and 

( ) ( ) ( )P A B P A P B∪ = +  for disjoint subsets A B,  belonging to S . Kolmogoroff claims 
also that for a decreasing sequence ( )nA ∈S  such that n nA∩ =∅,  one necessarily has 
lim ( ) 0n nP A→∞ = .  For arbitrary subsets A B,  in S , ( ) ( ) ( )P A B P A P B∩ =  holds. 
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