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Summary 
 
A survey of elementary mathematics, using the insights and general concepts made 
available by higher mathematics. We also observe how the “advanced standpoint” has 
changed over the last century, by reference to the works of Felix Klein on this topic. 

1. Introduction: Klein’s View of Elementary Mathematics 

In 1908, the German mathematician and mathematics educator Felix Klein published a 
series of three books (in German) under the title of Elementary Mathematics from an 
Advanced Standpoint, henceforth called EMAS for short. The first volume was subtitled 
Arithmetic, Algebra, Analysis, and the second volume was subtitled Geometry. Both of 
these volumes were translated into English in the1930s, and they have been popular 
with English-speaking mathematicians and students ever since. It is a tribute to Klein’s 
influence, and foresight, that his “standpoint” remains clearly comprehensible to 
mathematicians today, though of course our “standpoint” is somewhat different.  One of 
the goals of this article is to compare Klein’s view of elementary mathematics with the 
views of mathematicians today. 
 
Klein’s third volume was not published in English and it has been almost forgotten. 
Evidently, his subject matter (the mathematics of approximations) was of lesser interest 
to English-speaking mathematicians of his time, and one doubts that it would be of 
much interest today, now that computers have completely revolutionized the practice of 
numerical and graphical approximation. Indeed, computers have strongly influenced our 
standpoint on the material in Klein’s first two volumes as well, albeit in a more subtle 
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way. Klein’s view of arithmetic, algebra, analysis, and geometry has not been rendered 
obsolete by computers, but the modern view has to take them into account. 

2. Arithmetic 

Klein begins his account of arithmetic with the “fundamental laws of reckoning,” by 
which he means general properties such as the commutative and associative laws,  
 

,a b b a ab ba+ = + = ,  
 

( ) ( ) ( ) ( ),a b c a b c a bc ab c+ + = + + = , 
 
and what he calls monotonic laws: 
 
If  b c<   then a b a c+ < +  and ab ac< . 
 
Thus Klein initially assumes that numbers are positive, so his abstract “laws of 
reckoning” do not define a standard algebraic structure of today, such as a ring. He 
generally does not take abstraction so far as giving names to structures defined by 
abstract laws, as we probably would today (see the section on algebra below).  
 
In any case, Klein is well aware that the natural numbers are more than just an algebraic 
structure. Their “fundamental laws” actually follow from a deeper property, namely the 
inductive property of natural numbers: 
 

If a theorem holds for a small number, and if the assumption of its validity for a 
number n always ensures its validity for n+1, then it holds for every number. 
This theorem, which I consider to be really an intuitive truth, carries us over the 
boundary where sense perception fails. (EMAS, p. 11) 

 
Instances of proofs by induction can be found as far back as Euclid, but the foundational 
role of induction was not really recognized until the 19th century. Klein gives credit to 
Grassmann, whose Lehrbuch der Arithmetik of 1861 used induction to define addition 
and multiplication of natural numbers and to prove their “fundamental laws.” He also 
notes Peano’s formal theory of numbers of 1889, where induction and other axioms are 
written in a symbolic language and theorems are derived from them by formal rules of 
logic. Finally he emphasizes the problem of proving the consistency of Peano’s system 
PA (as it is now called, abbreviating “Peano arithmetic”), posed by Hilbert in 1904.  He 
shows a good understanding of the so-called Hilbert program, whose goal was to prove 
the consistency of all mathematics by analyzing the operation of formal systems, using 
only intuitively obvious assumptions about finite strings of symbols. 
 
Klein seemed to approve of the Hilbert program because he believed that in 
mathematics 
 

… one must retain something, albeit a minimum, of intuition. One must always 
use a certain intuition in the most abstract formulation with the symbols one uses 
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in operations, in order to recognize the symbols again, even if one thinks only 
about the shapes of the letters. (EMAS, p. 14). 
 

However, neither Klein nor Hilbert realized just how problematic the “intuitively 
obvious assumptions about finite strings of symbols” would be. It is reasonable to take 
this set of assumptions to be PA, because 
 

1. Finite strings of symbols can be interpreted as numerals. 
2. Operations on strings can then be defined arithmetically. 
3. The axioms of PA are intuitively obvious. 
4. Obvious assumptions about operations on strings are basic theorems of PA. 
5. All theorems about operations on strings – for example, whether the formal 

rules of PA lead to a contradiction – should therefore be provable in PA. 
 
But then, if one follows this train of thought a little further, one arrives at the stunning 
theorem of Kurt Gödel (1931) that the consistency of PA is expressible by a sentence of 
PA but is not provable in PA. 
 
Thus the “advanced standpoint” today must acknowledge that the consistency of PA is a 
very slippery problem. Nevertheless, the problem can be better appreciated by the 
modern audience, thanks to its connection with the concept of computation. In Klein’s 
time, computation was mainly confined to addition, subtraction, multiplication, division, 
and extraction of roots. Since these operations were generally carried out by hand, 
Klein’s readers were considerably more familiar with these operations than most people 
are now. On the other hand, mathematics students today are at least aware of the 
concept of a computer program, and many have written programs, so there is a greater 
understanding of the potential complexity of computation (see next section). 
 
Like us, Klein assumes that the rules for reckoning with decimal numerals are known, 
and he merely gives some simple examples that illustrate the use of general laws in 
particular computations. Then, as now, it was not fully appreciated how much more 
complex are the rules for reckoning with numerals than the abstract laws governing 
addition, multiplication, and ordering of numbers. However, Klein embraces applied 
arithmetic -- numerical computation – more enthusiastically than we generally do today, 
by describing the operation of early 20th-century calculating machines. It takes him four 
pages to describe what he admits is “merely a technical realization of the rules which 
one always uses in numerical calculation.” 
 
In one respect, arithmetic is a much more applied subject now than it was in Klein’s 
day. The transforming event was the discovery of public key cryptosystems in the 1970s, 
particularly the RSA system (named after its discoverers, Rivest, Shamir, and Adelman) 
of 1977. The RSA system is an application of the classic theorem of Euler and the 
concept of an inverse mod n – both standard, fare in elementary number theory – so 
RSA has now become a common topic for beginners. Thanks to the everyday 
occurrence of encryption in internet commerce, interest in cryptography generally has 
surged, and interest in number theory has surged with it. Topics such as the greatest 
common divisor (gcd), factorization, and the recognition of prime numbers have been 
revitalized due to attention of computer scientists interested in the making and breaking 
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of codes.  In particular, the workability of the RSA cryptosystem depends on the 
existence of a fast algorithm for the gcd (the classical Euclidean algorithm), a fast 
algorithm for generating large prime numbers (a recent discovery), and the presumed 
non-existence of a fast algorithm for factorization (still an open problem).  
 
The importance of algorithms in applied mathematics today is a second reason to 
include computation in our “advanced standpoint.” 
 
But before moving on to computation, we should mention another remarkably prescient 
section of Klein’s chapter on arithmetic: his account of quaternions. Klein introduces 
quaternions as a 4-dimensional extension of the complex numbers, and he evidently 
finds the quaternions much more interesting than the complex numbers. He thoroughly 
discusses their addition, subtraction, multiplication, and division, also the quaternion 
conjugate and absolute value, with particular attention to geometric interpretation. In 
particular, he shows how convenient the quaternions are for representing rotations of 3-
dimensional space. It was by no means clear in Klein’s day that quaternions had a future 
(if anything, they were already falling into obscurity), but history has come down on his 
side. Today, just as complex numbers are in the toolkit of every electrical engineer, 
quaternions are in the toolkit of every programmer in the field of video games or 
computer animation. 

3. Computation 

Computation was a common activity of mathematicians in Klein’s day, but it was not a 
branch of mathematics, because the field had not yet been organized around a concept 
of computability. And, surprisingly, the concept of computability did not arise from the 
practice of computation but from logic. More precisely, it arose from Hilbert’s program 
for proving the consistency of mathematics. 
 
Hilbert wanted a consistency proof because, around 1900, there were serious doubts 
about the foundations of mathematics. This was the time when the concept of set began 
to emerge as the fundamental mathematical concept. It was found to be possible to 
define numbers, functions, points, geometric figures – and seemingly everything else in 
mathematics – as sets of one kind or another; but what are sets, exactly? A problem 
with the set concept comes to light when one asks the more specific question: is the 
collection of all sets itself a set? Or more specifically still: what about the collection of 
all sets that are not members of themselves? If the latter collection X is a set, then X is 
either a member of itself, or not. But since the condition for membership of X is not 
being a member of oneself, one quickly reaches the conclusion that X is a member of 
itself if and only if X is not a member of itself.  
 
We can escape from this contradiction (known as the Russell Paradox) by deciding that 
the collection of all sets is not itself a set. However, that is not very reassuring. Sets and 
membership are fundamental concepts of mathematics, and if they lead so easily to 
contradiction, who knows what other contradictions may be lurking? Hilbert’s program 
was supposed to ensure consistency by writing axioms in a formal language, deriving 
theorems from the axioms by simple symbol-manipulation rules, and proving (by 
intuitively obvious principles) that the rules do not lead to a contradiction. As 
mentioned in the previous section, the proof of non-contradiction was pushed beyond 
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the “intuitively obvious” range by Gödel’s theorem about consistency proofs. However, 
the idea of proving theorems by symbol manipulation – without regard to the meaning 
of the symbols – was important for more than the intended reasons. 
 
Hilbert’s intention was to make the concept of “rule of inference” so precise that the 
claim that “the axioms and rules do not lead to a contradiction” was itself a 
mathematical sentence; hopefully, a provable sentence. A side-effect of making rules 
mathematically precise is that human intervention in mathematics is not required – in 
principle, proofs can be generated by a machine. 100 years ago, this effect was not of 
interest, because machines capable of complicated symbol manipulations did not exist. 
But in the 1920s (unbeknownst to Hilbert and Klein) the American mathematician Emil 
Post began a serious study of symbol-manipulation rules. Post’s investigations 
eventually led to a precise definition of the concept of computability. 
 
Post began, in the spirit of Hilbert’s program, with the aim of simplifying a known 
system of symbolic logic, the Principia Mathematica of Whitehead and Russell. His 
aim was to prove that the Principia is complete (that is, all its true sentences are 
derivable from its axioms) and consistent. He was pleased to find that all theorems of 
Principia could in fact be derived by very simple manipulations – essentially, by 
removing sequences of symbols from the left hand end of words and attaching 
sequences on the right – so he had high hopes of proving the completeness and 
consistency of Principia. 
 
But when it came to analyzing the behavior of such symbol-manipulation systems, Post 
was surprised to find intractable complexity in even very simple systems. 
 
Post’s most famous example is the system in which the words are strings of 0s and 1s, 
and the rules are:  
 

1. If the string begins with 1, remove the first three symbols, and attach 1101 to the 
right hand end. 

2. If the string begins with 0, remove the first three symbols, and attach 00 to the 
right hand end. 

 
It appears that, for any initial string, these rules lead either to termination or to periodic 
behavior, but this has never been proved. The unexpected complexity of simple rules 
stopped Post in his tracks and he made a dramatic change of direction. Instead of trying 
to predict the outcome of symbol-manipulation rules, he decided to show that outcomes 
are not always predictable. More precisely, he aimed now to show that no machine can 
correctly predict the outcome of every computation. 
 
It turns out, by an argument not unlike Russell’s paradox, that this is indeed the case. 
Each machine M has finite description, des( )M , which can be input to M , so the 
problem of predicting outcomes of computations includes the questions: 
 

MQ : Does M , given input des( )M , eventually halt with output NO? 
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It is fair to assume that any machine T that answers these questions receives question 
MQ  in the form of the word des( )M , since this input contains all necessary 

information. But then T  then cannot give the correct answer to question TQ . Hence 
there is no machine that can correctly predict the outcome of every computation. Since 
“computations” include proofs of theorems in formal systems, Post’s discovery reveals 
profound limitations in the formalization of mathematics, as Post realized. Among them 
are the incompleteness of PA (already noticed by Post in 1921) and the unprovability of 
consistency by methods of PA, later discovered by Gödel. 
 
However, Post’s argument for the incompleteness of PA, unlike Gödel’s, depended on 
being able to formalize the concept of computation. Today, this is the familiar fact that 
each algorithm can be encoded by a program (and hence by a finite string of symbols), 
but in Post’s time the formalization of computation was an entirely new and untested 
idea. Gödel, in particular, did not at first believe it could be done. The idea became 
generally accepted when the English mathematician Alan Turing introduced a new 
concept of machine in 1936 – one now known as the Turing machine. Turing’s paper 
included a detailed analysis of the process of computation, and a description of a 
universal machine that can simulate the computation of any particular machine. Turing 
also gave a formal version of the unsolvability of the halting problem (described 
informally by the questions MQ  above), and deduced from it the impossibility of 
predicting which sentences are proved by certain formal systems. 
 
Thus, before any universal computing machines were actually built, mathematicians 
knew that computation had its limits. The limitations discovered by Post, Gödel, and 
Turing have receded somewhat in mathematical consciousness today, but other 
limitations have come to the fore; particularly, speed limits. We are now aware of many 
problems that are solvable in principle, but for which the known solution is too slow to 
be of any use. One such problem is the factorization of large numbers. As mentioned at 
the end of the previous section, a fast algorithm for factorization is not known – and not 
desirable, as this would break the RSA cryptosystem. At present, it seems feasible to 
factorize numbers with only a few hundred digits, whereas it is feasible to generate 
prime numbers with thousands of digits. This should keep the RSA system secure for 
now, but the seemingly elementary questions of factorization and prime generation are 
sure to remain important for the foreseeable future. 
- 
- 
- 
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