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Summary 
 
The current mathematical modeling of the cell membrane and the ion channels therein 
started in the 1950s with the seminal work of Hodgkin and Huxley on the squid giant 
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axon. In their electrical equivalent of the nerve cell membrane, the cell membrane is 
thought of as a capacitor, representing the lipid bilayer that constitutes the cell 
membrane, in parallel with a resistor that represents the permeability of the cell 
membrane to specific ions. In the present chapter it is shown how this concept 
introduced by Hodgkin and Huxley has evolved into today’s mathematical models of 
the cell membrane and the ion channels therein. To provide the modeler with some 
insight into the electrophysiological techniques that have been used to obtain the 
experimental data on which the mathematical models are based, a brief overview of 
these techniques and their particular strengths and shortcomings is given. Also, some 
numerical issues are addressed, including the public availability of model source code 
and simulation environments to compile and run this code. 
 
1. Introduction 
 
In mathematical physiology, the description of the cell membrane and ion channels 
therein traces back to the seminal work of Alan Lloyd Hodgkin and Andrew Fielding 
Huxley on the giant axon of squid from the late 1930s to the early 1950s, for which they 
were awarded the Nobel Prize in Physiology or Medicine in 1963. In 1937, J.Z. Young 
had reported that the squid Loligo had exceptionally large ‘giant nerve cells’, with an 
axonal diameter up to almost one millimeter, controlling the contraction of the squid’s 
mantle, which the animal uses to squeeze out sea water and thus propel back in case of 
danger. 
 
The giant axon of Loligo allowed Hodgkin and Huxley to insert a glass capillary with 
two separate silver wires wound around it in spirals and carefully isolated from each 
other. One of these wires was then used to inject current and the other to record voltage, 
such that—with the use of a dedicated ‘feed-back amplifier’—the transmembrane 
potential could be clamped at any desired level (‘voltage clamp’, see Section 2.3 
below). This allowed the detailed characterization of the two main time- and voltage-
dependent current systems present in the membrane of the Loligo giant axon, i.e. a fast 
inward sodium current and a slower potassium outward current, which are responsible 
for the rapid upstroke and the subsequent repolarization of the action potential, 
respectively. 
 
In the final paper of the famous 1952 series on their voltage clamp experiments, 
Hodgkin and Huxley summarized their experimental results and analyzed these in terms 
of an electrical equivalent of the nerve membrane. Specifically, they fitted equations to 
the dependence of the permeability of the nerve membrane to sodium and potassium 
ions as functions of membrane potential and time under voltage clamp conditions. This 
resulted in a set of non-linear differential equations that could predict the quantitative 
behavior of the model nerve under a variety of free-running (non-voltage-clamped) 
conditions. 
 
It is important to note here that Hodgkin and Huxley were aware of the bilipid structure 
of the cell membrane, which had only recently been established at the time of their 
discoveries, but that they did not know that the cell membrane contained specific 
proteins that we now know as ion channels, which can flip between open and closed 
states at rates that depend on the transmembrane potential, or membrane potential, i.e. 
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the voltage between the cytoplasm, which is considered to be isopotential, and the 
extracellular fluid. With respect to the voltage-dependent changes in membrane 
permeability to specific ions, Hodgkin and Huxley noted that “details of the mechanism 
will probably not be settled for some time, but it seems difficult to escape the conclusion 
that the changes in ionic permeability depend on the movement of some component of 
the membrane which behaves as though it had a large charge or dipole moment”, thus 
correctly suggesting the action that takes place if an ion channel opens or closes. Also, 
they realized that “some additional process must take place in a nerve in the living 
animal to maintain the ionic gradients which are the immediate source of the energy 
used in impulse conduction”, thus pointing to the requirement of an ‘ion pump’. It was 
Jens Christian Skou who discovered the Na+/K+-ATPase, or sodium-potassium pump, 
which maintains the sodium and potassium gradients by pumping three sodium ions out 
of the cell for every pair of potassium ions pumped in, thus generating a steady net 
outward current. The energy for this pump comes from the decomposition of adenosine 
triphosphate (ATP) into adenosine diphosphate (ADP) and a free phosphate ion. For his 
important discovery, which he first described in 1957, although not fully realizing the 
importance of his findings at that time, Skou received the Nobel Prize in Chemistry in 
1997. 
 
In the following, we will explain and discuss how the seminal work of Hodgkin and 
Huxley has evolved into today’s mathematical models of the cell membrane and the ion 
channels therein. 
 
2. Experimental Techniques 
 
It is important that ‘modelers’ have some insight into the experimental techniques that 
have been used to obtain the experimental data on which their mathematical models are 
based. Therefore, a brief overview of these techniques and their particular strengths and 
shortcomings will be given in this section. 
 
2.1. Ion Concentrations 
 
First of all, it should be noted that the electrical activity of all excitable cells relies on 
the existence of a ‘chemical gradient’ between the intracellular and extracellular fluids 
that are effectively separated by the lipid bilayer that we know as the cell membrane. 
This chemical gradient results from a difference in ionic composition of the intracellular 
and extracellular compartments, in particular a ratio of approximately 1:15 for sodium 
ions and 30:1 for potassium ions, as diagrammed in Figure 1 for mammalian cardiac 
cells. 
 
A common misunderstanding is that (intracellular) ion concentrations change 
considerably during the course of an action potential. This is only true for the 
intracellular free calcium concentration, which is several orders of magnitude lower, in 
the nanomolar range, than that of sodium and potassium, which is in the millimolar 
range. Due to the large capacitance of the cell membrane, the movement of a relatively 
small number of ions is sufficient to cause a significant electrical effect, i.e. an action 
potential, without causing any noticeable effect on the concentration of these ions. 
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Figure 1. Composition of the intracellular and extracellular fluid in mammalian cardiac 
cells. A denotes anions. 

 
2.2. Whole-Cell Recording 
 
In today’s cardiac cellular electrophysiology, ‘patch clamp’ is the common technique to 
record the electrical activity of single cardiac cells, e.g. the spontaneous electrical 
activity of pacemaker cells isolated from the sinus node, or sinoatrial (SA) node, or 
secondary pacemaker cells isolated from the atrioventricular (AV) node. Initially, the 
ionic mechanism of cardiac electrical activity was studied in small tissue preparations, 
using a double microelectrode voltage clamp technique. This technique yielded useful 
qualitative information on this ionic mechanism, but precise quantitative data could not 
be obtained due to, among other things, nonuniformity of the voltage clamp and 
extracellular accumulation and depletion of carrier ions. For these reasons, and also 
because of the technical difficulty of obtaining these data, i.e. of maintaining two 
separate microelectrode impalements in contracting muscle, this technique has been 
superseded by whole-cell recording from single cells that are enzymatically dissociated 
from cardiac tissue. 
 
Cardiac myocytes can be isolated from (fragments of) the hearts of laboratory animals 
by dedicated enzymatic isolation techniques. Cell suspensions are then put into a 
recording chamber on the stage of an inverted microscope and continuously superfused 
with an extracellular Tyrode’s solution, i.e. a salt solution with a composition in 
accordance with the interstitial fluid of the intact heart. Pharmacological blockers of 
specific ion channels may be added to this bath solution.  
 
Also, the composition of the bath solution may be changed to facilitate the recording of 
a specific ion current, e.g. sodium ions may be replaced with non-permeating choline 
ions, as in some of the experiments by Hodgkin and Huxley. Apparently healthy spindle 
or elongated spindle-like nodal cells or rod-shaped working myocardial cells with clear 
cross-striations (Figure 2A) are then selected for electrophysiological measurements. If 
not stimulated, pacemaker cells isolated from SA or AV nodal tissue show regular 
rhythmic contractions, whereas cells isolated from the working myocardium, i.e. from 
atrial or ventricular tissue, are quiescent. 
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For electrophysiological recording, pipettes are pulled from small borosilicate glass 
capillaries and heat polished. A pipette is filled with a salt solution mimicking the 
intracellular fluid. When filled with this ‘pipette solution’, the pipette typically has a 2–
3 MΩ resistance, contributing to an unwanted ‘series resistance’, which can be 
electronically compensated by the ‘patch clamp amplifier’.  
 
With the use of a micromanipulator that holds the pipette, the myocyte is approached 
with the recording pipette (Figure 2B). When the pipette tip is in close vicinity of the 
myocyte (Figure 2C, left), a little suction is applied and an omega-shaped seal is 
obtained (Figure 2C, middle). If some more suction is applied, the seal is broken and 
electrical access to the cell interior is obtained (Figure 2C, right). The thus obtained 
recording configuration is known as the ‘whole-cell patch clamp configuration’. 
 
 This configuration allows for continuous registration of the transmembrane potential. A 
serious disadvantage of the technique is that the cell interior is dialyzed with the pipette 
solution, so that cytosolic components regulating pacemaker activity may be diluted, 
resulting in ‘rundown’ (see below).  
 
To prevent cell dialysis, ‘perforated patch recording’, first described in the 1980s, may 
be used. With this technique, electrical access to the cell interior is not obtained by 
rupturing the membrane under the pipette tip (Figure 2C, right), but by adding an 
antibiotic like nystatin or amphotericin B to the pipette solution that perforates the cell 
membrane with ion channels that are permeable to monovalent ions and small 
molecules only.  
 
With both techniques, significant ‘tip potentials’, i.e. ‘liquid junction potentials’, may 
arise, which should be estimated and corrected for. Such liquid junction potential arises 
when two solutions of different composition, in terms of ion concentrations and ion 
diffusion speeds, are part of the same electrical circuit, like the bath solution and the 
pipette solution in a patch clamp experiment. 
 
Also, errors in recording membrane potential may arise if the ‘seal resistance’ between 
the patch pipette and the cell membrane is not sufficiently high, resulting in a ‘leakage 
current’ to the bath solution.  
 
This leakage current should not be confused with the membrane current of unknown 
nature that remains after resolving all time- and voltage-dependent or ‘gated’ ion 
currents, which is sometimes referred to as ‘leakage current’.  
 
Hodgkin and Huxley, e.g., separated the membrane current of the Loligo giant axon into 
the time- and voltage-dependent sodium and potassium currents that allow first sodium 
and then potassium to cross the membrane at a high rate when it is depolarized, thus 
producing an action potential, as well as a time-independent leakage current composed 
of sodium, potassium and chloride ‘leakage’ and “probably also ions transferred by 
metabolism against concentration gradients”, thus referring to the at that time unknown 
net outward current resulting from the sodium-potassium pump. 
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Figure 2. Recording electrical activity of single cardiac myocytes. (A) Enzymatically 
isolated single ventricular myocyte with typical dimensions of such cell. (B) 

Approaching the myocyte with a recording pipette. (C) Applying suction to obtain 
electrical access to the cell interior. 

 
2.3. Current Clamp and Voltage Clamp 
 
The ‘whole-cell patch clamp configuration’ of Figure 2C (right) can be used in different 
recording modes. The main recording modes are ‘current clamp’ (Figure 3A) and 
‘voltage clamp’ (Figure 3B). In either case, the bath solution is grounded to earth, as 
indicated by ‘ 0V = ’ in Figure 3A. In current clamp mode, the free-running membrane 
potential of the myocyte ( mV ) is recorded.  
 

 
 

Figure 3. Different recording modes of the whole-cell patch clamp configuration. (A) 
Current clamp mode. A current ( injI ) can be injected into the myocyte through the 
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recording pipette, e.g. as a stimulus to elicit an action potential in a normally quiescent 
cell, and the free-running membrane potential of the myocyte ( mV ) is recorded. (B) 
Voltage clamp mode. The membrane potential of the myocyte is held at a set level 

through a feedback circuit in the patch clamp amplifier. Consequently, the current that 
enters the cell through the recording pipette ( injI ) matches the current that leaves the 

cell through its membrane ( mI ). 
 
In the voltage clamp mode, the membrane potential of the myocyte is held at a set level 
through a feedback circuit in the patch clamp amplifier. Consequently, there is no 
(dis)charging of the cell membrane capacitance and the current that enters the cell 
through the recording pipette ( injI ) matches the current that leaves the cell through its 
membrane ( mI ). This way, ion currents can be studied under carefully controlled 
conditions, applying dedicated ‘voltage clamp protocols’ (cf. Section 2.4). 
 
When recording from pacemaker cells isolated from the sinoatrial (SA) node, 
spontaneous action potentials, as in Figure 4, can be acquired. When recording from 
intrinsically quiescent cells, like atrial or ventricular myocytes, a brief current pulse can 
be injected into the myocyte through the recording pipette as a stimulus to elicit an 
action potential ( injI ). Action potentials, whether spontaneous or elicited, are commonly 
characterized by ‘action potential parameters’ as diagrammed in Figure 5 for an SA 
nodal pacemaker cell. 

 

 
F 

igure 4. Sinoatrial (SA) node action potentials (APs) and associated net membrane 
current. (A) Typical spontaneous APs of a pacemaker cell isolated from the rabbit SA 

node. (B) Associated net membrane current ( netI ) calculated from net m mI C dV dt= − × , 
where mC  and mV  denote membrane capacitance, which amounted to 40.4 pF for this 
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cell, and membrane potential, respectively (see Section 3.1 below). Note the small 
inward current underlying the slow spontaneous diastolic depolarization. By 

convention, an inward current, i.e. an inward flow of positively charged ions, is 
depicted as a negative current. 

 

 
 

Figure 5. Outline of the electrophysiologist’s nomenclature in characterizing action 
potentials. In addition to the indicated action potential duration at 50 and 100% 

repolarization (APD50 and APD100, respectively), related measures like APD80 or APD90 
are also widely used. Diastolic depolarization rate (DDR) is calculated from DDR  
V t= Δ Δ , with VΔ  and tΔ  as indicated. In this example, tΔ  is set to 100 ms, in which 

case DDR is sometimes denoted by DDR100. 
 
- 
- 
- 
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