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Summary 
 
Cellular excitability is at the very heart of life. It is a consequence of the difference in 
ionic composition which all organisms, uni- or multi-cellular, maintain between their 
intracellular medium and the environment. The passive electro-diffusion accompanying 
this concentration difference, along with active ionic pumps, evokes an electric-
potential gradient of tens of millivolts between the inside and outside of the cell, and 
hence a huge field within the tiny cell membrane. Excitable cells like neurons exploit 
this membrane electric field to convey signals from their environment and to 
communicate with other cells.  
 
They possess membrane proteins that alter their conformation either under the influence 
of changes in the membrane electric field itself or when they are exposed to external 
stimuli of chemical, mechanical or photonic nature. Some of these proteins are ionic 
channels whose changing conductance in turn modifies the membrane potential, a 
process transforming the membrane into a complex dynamical system operating on a 
submillisecond time-scale. 
 
This paper first summarizes the physical principles underlying the passive and active 
membrane properties, culminating in the model of the propagating action potential. It 
then examines simplifying mathematical models of excitability, their origin, physical 
basis and dynamic behavior, illustrated with phase-plane portraits and bifurcation 
diagrams, and leading to the widely accepted classification of neurons into integrators 
and resonators. The paper then considers the excitability and dynamics of simple 
networks of neurons, with an emphasis on mass phenomena like synchronous 
oscillations. After a few notes on stochastic models, the paper concludes with potential 
targets for future research. 
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1. Introduction 
 
The history of bioelectricity developed concurrently with that of electromagnetism. 
Witness to this is the debate at the end of the 18th century between Galvani and Volta as 
to whether the muscle contractions observed by Galvani during frog dissection found 
their origin in electricity within the tissue itself or in the contact between dissimilar 
metals. The latter view, maintained by Volta, led to the discovery of the voltaic pile, 
whereas Galvani’s view developed to the current theory of cell excitability. At one 
important characteristic, however, all comparison falls short: electric currents in 
excitable tissue are carried by ions, mostly sodium (Na+), potassium (K+), chlorine (Cl-) 
and calcium (Ca++), instead of electrons, and they travel at speeds of meters per second 
rather than the velocity of light. Forces due to magnetic induction, although detectable, 
can largely be ignored. 
 
The origin of bioelectricity is closely related to the requirement of all life to generate 
and maintain an intracellular environment that is quite different from that of the outside 
world. Electric- potential gradients develop across all membranes that separate 
compartments of dissimilar ionic composition: hence not only across the cell membrane 
proper or plasmalemma (which separates the cytoplasm from the extracellular space), 
but also across the membrane of intracellular organelles such as mitochondria or the 
tonoplast vacuole of algae. Other organisms, like the uni-cellular malaria parasite, are 
able to maintain a constant cytoplasmic composition in quite different environments, for 
instance when they invade the liver cell or red blood cell to become intracellular 
parasites. They do so by actively pumping ions and nutrients, and through complex 
gene mechanisms that alter the membrane properties of their host cells. 
 
In animals, the transmembrane electric potentials can largely be explained by electro-
diffusion: differences in the speed of migration of different ions across the membrane 
cause a separation of charges (ions) of opposite polarity. The order of magnitude of the 
transmembrane potential is from several tens of millivolts to 100 mV, but some animals 
like the torpedo fish are able to discharge potentials of several hundreds of volts by 
taking advantage of a pile-like organization of their electric cells.  
 
Electrical excitability arises when cells actively change their transmembrane potential in 
order to signal changes in the environment or to communicate with other cells. They 
typically do so by changing the membrane permeability for one particular ion species in 
a very selective manner, by opening or closing transmembrane ionic channels, a process 
that can occur on a submillisecond time-scale. The process by which external stimuli 
modulate the electric potentials in sense organs is called transduction. The stimulus 
opens or closes membrane channels for particular ionic species either by mechanical 
forces (hearing, touch), by a photochemical reaction chain (vision), or by the direct 
binding of chemical compounds to membrane receptors (taste, smell). The 
communication of changes in the membrane potential from one cell to another can 
occur electrotonically at electrical synapses, which are poorly selective ionic channels 
of varying resistance connecting the interiors of adjacent cells, but in vertebrates mostly 
chemically: neurochemical transmitter molecules locally released by the presynaptic 
cell bind to receptors on the postsynaptic cell that are either ionic channels or are 
coupled to them. At the effector side, changes in the membrane potential can trigger 
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intrinsic signaling pathways, evoke the release of neurotransmitters or secretory 
substances, induce mechanical forces through excitation-contraction coupling as in 
muscles, or generate electric fields in the environment (as by electric fish). 
 
By far the most important property of excitable membranes, however, is their ability to 
change their permeability for ions under the influence of their own electric field. This 
characteristic makes them genuine dynamical systems, responding not only to 
stimulation, but able to generate their own intrinsic activity, as exemplified most 
strikingly by pacemaker cells in the heart and by neurons in the respiratory brain 
centers. 
 
The mathematical modeling of excitability has a long history. Some of the models have 
an empirical origin, aiming to reproduce experimental data, but many were inspired by 
contemporary theories of electric circuits, nonlinear systems or population dynamics. 
The first sections of this chapter review the macroscopic physical processes underlying 
excitability, culminating in the Hodgkin-Huxley model of the action potential. Later 
sections review the physical roots of qualitative, reduced models and summarize more 
recent insights in the dynamics of excitable networks. Although most of the examples 
and illustrations were taken from neuroscience, the underlying principles generalize to 
other excitable tissues like heart and muscle.  
 
2. The Passive Properties of Biological Membranes 
 
This section introduces the electric phenomena underlying the sub-threshold responses 
to stimuli too weak to recruit full-blown excitation, and provides an indispensable basis 
for the understanding of genuine (active) excitability, which is the subject of Section 3. 
The passive phenomena include electro-diffusion (the Nernst-Planck equation), the 
establishment of the ionic equilibrium potential and the resting membrane potential, and 
the leaky integration and passive spread of electric potentials (the cable equation). 
 
Because these phenomena involve distinct compartments (intra- versus extracellular) or 
propagate along one-dimensional cable structures (axons and dendrites), the underlying 
physical laws are here formulated in only a single spatial dimension x and the time t . 
 
2.1. Diffusion of Ions due to a Concentration Gradient 
 
The flux of ions in an inhomogeneous solution is described by Fick’s second low, 
stating that the concentration at a certain point x will rise or fall if the concentration in 
the immediate neighborhood (shrinking in the limit to zero) is higher or lower than, 
respectively, the concentration at that point. Mathematically this corresponds to the 
second-order derivative with respect to position being positive (convex) or negative 
(concave) 
 

2

2
( , ) ( , )c x t c x tD

t x
∂ ∂
∂ ∂

= .              (1) 
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Here ( ),c x t is the space- and time-dependent concentration, and D  is the diffusion 
coefficient for the particular ion in that particular solvent. As diffusion is a process of 
thermal agitation, D  is given by 
 

Bk TD
β

= ,         (2) 

 
where T is the absolute temperature in degrees Kelvin, Bk  is a scaling factor (called 
Boltzmann’s constant) that allows kinetic energy to be measured as temperature, and β  
is a friction factor depending on the size and shape of the solute molecules and solvent. 
 
The second-order derivative in (1) can be understood as the difference between the 
influx and outflux at position x, each being described by Fick’s first law:  
 

( , )( , ) dc x tJ x t D
dx

= − .               (3) 

 
The flux J quantifies the number of ions in moles passing through a plane surface of 
unit area during a unit time interval.  
 
As different ions, having different diffusion coefficients, move with different velocities, 
a concentration gradient of a solute in a solvent will generate a separation of charges (a 
local minute violation of electro-neutrality) causing an electric-potential gradient, which 
is the origin of diffusive potentials and of potentials at the junction of dissimilar 
solutions (liquid-junction potentials).  
 
2.2. Drift of Ions due to an Electric Field (Potential Gradient) 
 
In a solution, ions move at a constant velocity when under the influence of an electric 
force, rather than being accelerated as they would in a frictionless medium.  
 
Hence a force F , 
 

e( ) dF x z q
dx
ϕ

= ,               (4) 

 
generated by a field (a gradient of the electric potentialϕ ) and acting on an ion of total 
charge ezq  (the valence times the unitary proton charge), causes the ion to drift with 
velocity 

Dv Fμ=          (5) 
 
where the mobility μ  is related to the diffusion coefficient D  as 
 

B

1D
k T

μ
β

= = .         (6) 
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The ion flux is proportional to the number of ions available, ( )c x , and to the drift 
speed, giving 
 

D( ) ( )J x c x v= .                (7) 
 
2.3. The Nernst-Planck Electro-Diffusion Equation 
 
The Nernst-Planck equation expresses the fact that under the influence of simultaneous 
electrical and chemical gradients, the respective fluxes can be summed: 
 

D F e
( ) ( )( )dc x d xJ J J D zq c x

dx dx
ϕμ= + = − − .    (8) 

 
Alternative formulations, using exclusively D  or μ  to characterize the ion’s friction 
forces, are 
 

B e

e

B

( ) ( )( ( ) )

( ) ( )( ( ) )

dc x d xJ k T zq c x
dx dx

dc x q z d xJ D c x
dx k T dx

ϕμ

ϕ

= − +

= − +
      (9) 

 
Obviously, a single equation does not suffice to describe the evolution over space and 
time of two physical quantities c andϕ . The drift of the ions described by (8) will 
change their spatial distribution in the solution and hence the electric field they 
generate. The missing equation is Poisson’s law, stating that the gradient of the electric 
field at any position is proportional to the charge density ( )xρ at that point  

2 ( )( ) xx ρϕ
ε

∇ = − .               (10) 

 
The simultaneous system of Nernst-Planck and Poisson equations suffices to calculate 
the evolution over time and space of the ionic concentrations from given initial and 
boundary conditions, but is difficult to solve. Nevertheless the Nernst-Planck equation 
can be used when simplifying assumptions are made, such as electro-diffusive 
equilibrium, or near constancy of the concentration profile or of the electric field. 
 
 
 
2.4. Solutions to the Electro-Diffusion Equation 
 
In this subsection, three solutions to the Nernst-Planck equation are developed. The 
solutions, and the underlying assumptions, were derived at an age long before the 
concept of ion channels had been established, but they still form the mathematical basis 
for the description of excitable cells. 
 
2.4.1. The Nernst Potential 
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The simplifying assumption here is electro-diffusive equilibrium, or zero flux, for a 
single ion. Solving the electro-diffusion equation for a particular ion species, say K+, at 
zero flux yields its so-called Nernst potential KV .  
 

[ ] [ ]

K e K
K

B

K e K

K B

out oute K
K in in

B

B out
K

e K in

( ) ( )( ( ) ) 0

1 ( ) ( )
( )

ln( ( )) ( )

[ ]ln
[ ]

dc x q z d xJ D c x
dx k T dx

dc x q z d x
c x dx k T dx

q zc x x
k T

k T KV
q z K

ϕ

ϕ

ϕ

+

+

= − + =

= −

= −

=

         (11) 

 
The Nernst potential is the electric potential that must be applied to oppose diffusion 
due to the concentration gradient. If the ion is free to diffuse, diffusion will continue 
until it is opposed by an electric potential that generates a flux of equal magnitude in the 
opposite direction. This electric field can be a consequence of the ion movement itself. 
For instance, potassium ions, being inside the cell at a concentration far exceeding their 
extracellular concentration, will diffuse across the cell membrane until the diffused ions 
have established a potential across the membrane (which acts as a capacitor) that is 
equal to the Nernst potential. 
 
Table 1 lists typical intra- and extracellular concentrations of the major ions involved in 
excitability, and the Nernst potentials corresponding to their ratios. 
 

Ion species 
Extracellular 
concentration 

(mM) 

Intracellular 
concentration 

(mM) 
Ratio 

Equilibrium 
potential 

(mV) 
Na+ 145 12 12 +67 
K+ 4 155 0.026 -98 

Ca2+ 1.5 0.0001 15 000 +129 
Cl- 123 4.2 29 -90 

nonpermeant 
anions 

~0 ~46 generate potential through 
Donnan effect 

Sources: Values for permeant ions taken from Hille B. (2001). Ion Channels of 
Excitable Membranes. Sunderland, MA: Sinauer. Values for nonpermeant charges taken 
from Kurbel S. (2008) Are extracellular osmolality and sodium concentration 
determined by Donnan effects of intracellular protein charges and of pumped sodium? 
Journal of Theoretical Biology 252, 769-772. 

 
Table 1. Concentration gradient of the major ions involved in excitability. 

 
It is important to understand that only a small amount of charge is needed to generate an 
electric field of sufficient strength to oppose a biological concentration gradient. The 
order of magnitude of the potentials involved in excitability is given by the factor 
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e/kT q  in the formula for the Nernst potential, and measures 25 mV at 37 °C. These 
potentials are generated by charges located within a tiny shell, only a few Ångströms 
wide (1 Å equals 10-10 m), surrounding the membrane. (Further away from the cell 
membrane, ions of opposite polarity completely neutralize the charges by Debye 
shielding.)  
 
From this value of 25 mV and the electric capacity of the cell membrane (typically 1µF 
cm-2), the number of elementary charges needed to generate physiological potentials has 
been calculated to measure only one electron or proton charge per square area of side 
250 Å. Hence the number of ions needed to halt net diffusion, and to determine the 
Nernst potential, is several orders of magnitude less than what would be needed to 
significantly affect their concentrations. This holds for all ionic currents, except that 
carried by calcium. Calcium ions are strongly buffered by intracellular proteins and 
accumulated in endoplasmatic stores, and the cytoplasmic concentration of free Ca2+ 
ions is extremely low (see Table 1). During excitation, influx of Ca2+ (through the 
external cell membrane or from intracellular deposits) can sharply raise its local 
concentration, and this signal is a major messenger between the extracellular event 
exciting the cell, and the chain of intracellular events potentially leading to contraction, 
secretion, etc.  
 
The minute charges involved ensure that, apart from a tiny shell, electro-neutrality is 
maintained in both the intra- and extracellular environments (implying that the number 
of negative charges equals the number of charges of positive polarity). As concentration 
gradients between the intra- and extracellular environments form the basis of changes in 
the membrane potential, and hence of all excitability, it is appropriate to ask how these 
differences in ionic concentration are generated and maintained. 
 
Two mechanisms seem to be involved: the passive Donnan equilibrium and active ion 
pumps. The phenomenon of a Donnan equilibrium is based on the excess number inside 
the cell of macromolecules having a negative surface charge (proteins, nucleic acids). 
These molecules, owing to their size, cannot permeate the cell membrane. However, the 
requirement of electro-neutrality ensures that an equivalent number of diffusible, 
positive charges stay within the cell. Hence the effect is to impede the outward diffusion 
of K+ and the inward diffusion of Cl-.  
 
If the Donnan equilibrium were the only mechanism underlying concentration gradients, 
then all ionic species should be distributed such that their concentrations yielded 
identical Nernst potentials, equal in magnitude to the actual membrane potential. In 
many excitable cells the resting potential is about -70 mV (inside negative), which 
indeed is close to the Nernst potentials for K+ and Cl- but differs profoundly from the 
Nernst potential corresponding to the concentration ratio for Na+ ions (+50 mV, see 
Table 1). Hence whereas the Donnan equilibrium may explain the abundance of K+ 
inside the cell and that of Cl- outside, it cannot explain the sparseness of Na+ within the 
cell. The latter requires an energy-consuming mechanism, pumping Na+ outward 
against the electro-chemical gradient. These ion pumps may be electro-neutral (for 
instance exchanging one Na+ for one K+ ion), or electro-genic (for instance 3 Na+ 
against 2 K+). Electro-genic pumps add an extra flux to (8), and hence can generate a 
membrane potential greater than that generated by electro-diffusion alone. 
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