
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer 

©Encyclopedia of Life Support Systems (EOLSS) 

COMPUTATIONAL INTELLIGENCE 
 
K. Mainzer 
Institute of Interdisciplinary Informatics, University of Augsburg, Germany  
 
Keywords: Affective Computing, Artificial Intelligence, Cellular Automata, 
Computability, Computational Complexity, Decidability, Genetic Programming, 
Intelligent Agents, Internet, Knowledge-based Systems, Learning Algorithms, Neural 
Networks, Swarm Intelligence, Ubiquitous Computing. 

Contents 

1. Review of Subject Articles 
1.1.General Principles and Purposes of Computational Intelligence 
1.2.Neural Networks 
1.3.Simulated Annealing 
1.4.Adaptive Systems 
1.5.Biological Intelligence and Computational Intelligence 
2. Introduction 
3. Computability, Decidability, and Complexity 
4. Computational Intelligence and Knowledge-based Systems 
4.1.Beginning of Artificial Intelligence (AI) 
4.2.Knowledge-based Systems and Problem Solving 
5. Computational Intelligence and Neural Networks 
5.1.Beginning of Computational Networks 
5.2.Neural Networks and Learning Algorithms 
6. Computational Life and Genetic Programming  
6.1.Computational Growth and Cellular Automata 
6.2.Computational Evolution and Genetic Programming 
7. Computational Intelligence and Life in the World Wide Web 
Glossary 
Bibliography 
Biographical Sketch 

Summary 

Can machines think? This famous question of Alan Turing has inspired computational 
intelligence. The historical roots of computational intelligence stem back to the 17th 
century and the program for mechanizing thinking (mathesis universalis). The modern 
theory of computability distinguishes complexity classes of problems, meaning the 
order of corresponding functions describing the computational time of their algorithms 
or computational programs. Modern computer science is interested not only in the 
complexity of universal problem solving but also in the complexity of knowledge-based 
programs. Famous examples are expert systems simulating the problem solving 
behavior of human experts in their specialized fields. But the algorithmic mechanization 
of thinking with program-controlled computers has some severe obstacles which cannot 
be overcome by growing computational capacities. For example, pattern recognition, 
the coordination of movements, and other complex tasks of human learning cannot be 
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mastered by conventional computer programs. Artificial neural networks realize the 
principles of complex dynamical systems. They are inspired by the successful technical 
applications of nonlinear dynamics to solid-state physics, spin-glass physics, chemical 
parallel computer, optical parallel computer, laser systems, and the human brain. There 
are already some applications of artificial neural networks in neurobionics, medicine, 
and robotics. Besides computational intelligence or "artificial intelligence" (AI) as a 
classical discipline of computer science "artificial life" (AL) is a newgrowing field of 
research. Genetic programming made computational evolution possible. Virtual agents 
are designed with different degrees of autonomy, mobility, reactivity or learning 
capabilities for communicating and cooperating with the Internet. Distributed 
computational intelligence and life transform the World Wide Web into an 
computational ecology with ubiquitous computing and e-commerce.  
 
1. Review of Subject Articles 

1.1. General Principles and Purposes of Computational Intelligence 

L. Reznik considers computational intelligence as integrity of theories, applying 
methods and models analogous to those demonstrated by biological intelligent systems 
in problem solving and decision making. Among such theories are those which today 
are often collected as 'soft computing'. 

1.2. Neural Networks 

I. Vajda describes the development and foundations of neural networks from 
Rosenblatt's perceptron up to Kohonen's self-organizing maps and further present 
approaches used as tools to solve practical problems without any biological analogies. 

1.3. Simulated Annealing 

From Statistical Thermodynamics to Combinatory Problem Solving D. Thiel presents 
the principle of the Simulated Annealing (SA) algorithm, corresponding to Boltzmann's 
thermodynamics, which has been particularly successful in solving various 
combinatorial decision and optimisation problems of immense computational 
complexity (e.a., statisfiability problem, travelling salesman problem, quadratic 
assignment problem). 

1.4. Adaptive Systems 

R. Pla-Lopez suggests a general theory of adaptive systems changing their behavior 
through interaction with their environment, in order to simulate the computational 
intelligence of living systems. 

1.5. Biological Intelligence and Computational Intelligence 

G. A. Chauvet compares biological intelligence (e.a., motoric intelligence) with 
computational intelligence which may be implemented on a computer by means of a 
program or by means of a processor with an architecture designed for an analogical 
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representation of the physiological function. Such neuromimetic circuits may be used 
for the replacement of deficient organs in medicine or for the execution of human 
functions by machine. 
 
2. Introduction 
 
The five articles briefly commented summarize some of the main tendencies in today's 
development of Computational Intelligence. But to gain better insight into the process, 
and on the basis of these works, it is worthwhile to retrace the first historical steps in 
this direction. The mechanization of thoughts begins with the invention of mechanical 
devices for performing elementary arithmetic operations automatically. A mechanical 
calculation machine executes serial instructions step by step. First, there is an input 
mechanism by which a number is entered into the machine. A selector mechanism 
selects and provides the mechanical motion to cause the addition or subtraction of 
values on the register mechanism. The register mechanism is necessary to indicate the 
value of a number stored within the machine, technically realized by a series of wheels 
or disks. If a carry is generated because one of the digits in the result register advances 
from 9 to 0, then that carry must be propagated by a carry mechanism to the next digit 
or even across the entire result register. A control mechanism ensures that all gears are 
properly positioned at the end of each addition cycle to avoid false results or jamming 
the machine. An erasing mechanism has to reset the register mechanism to store a value 
of zero.  
 
Wilhelm Schickard (1592-1635), professor of Hebrew, oriental languages, mathematics, 
astronomy, and geography, is presumed to be the first inventor of a mechanical 
calculating machine for the first four rules of arithmetic. The adding and subtracting 
part of his machine is realized by a gear drive with an automatic carry mechanism. The 
multiplication and division mechanism is based on Napier's multiplication tables. Blaise 
Pascal (1623-1662), the brilliant French mathematician and philosopher, invented an 
adding and subtracting machine with a sophisticated carry mechanism which in 
principle is still realized in our hodometers of today.  
 
But it was Leibniz' mechanical calculating machine for the first four rules of arithmetic 
which contained each of the mechanical devices from the input, selector, and register 
mechanism to the carry, control, and erasing mechanism. The Leibniz machine became 
the prototype of a hand calculating machine. If we abstract from the technical details 
and particular mechanical constructions of Leibniz' machine, then we get a model of an 
ideal calculating machine which in principle is able to calculate all computable 
functions of natural numbers.  
 
Leibniz (1646-1716) even designed a mechanical calculating machine for the binary 
number system with only two digits 0 and 1, which he discovered some years earlier. 
He described a mechanism for translating a decimal number into the corresponding 
binary number and vice versa. As modern electronic computers only have two states 1 
(electronic impulse) and 0 (no electronic impulse), Leibniz truly became one of the 
pioneers of computer science.  
 
Leibniz' historical machines suffered from many technical problems, because the 
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materials and technical skills then available were not up to the demands. Nevertheless, 
his design is part of a general research program for a mathesis universalis intended to 
simulate human thinking by calculation procedures ("algorithms") and to implement 
them on mechanical calculating machines. Leibniz proclaimed two basic disciplines of 
his mathesis universalis. An ars iudicandi should allow every scientific problem to be 
decided by an appropriate arithmetic algorithm after its codification into numeric 
symbols. An ars iveniendi should allow scientists to seeks and enumerate possible 
solutions of scientific problems. Leibniz was deeply convinced that there are universal 
algorithms to decide all problems in the world by mechanical devices.  
 
In the 19th century it was the English mathematician and economist Charles Babbage 
who not only constructed the first program-controlled calculation machine (the 
"analytical engine") but also studied its economic and social consequences. A 
forerunner of his famous book On the economy of machinery and manufactures in 1841 
was Adam Smith's idea of economic laws, which paralleled Newton's mechanical laws. 
In his book The Wealth of Nations, Smith described the industrial production of pins as 
an algorithmic procedure and anticipated Henry Ford's idea of program-controlled mass 
production in industry. 
 
3. Computability, Decidability, and Complexity 
 
The hand calculating machine can easily be generalized to Marvin Minsky's register-
machine. It allows the general concept of computability to be defined in modern 
computer science. An ideal register machine has a finite number of registers which can 
store any finite number of a desired quantity. The program of a register machine is 
defined by two elementary procedures like adding and substracting a digit in a register. 
Programs of these two elementary devices can be chained or combined with some 
control mechanism. A numerical function is called computable by a register machine if 
there is such a program combining the function. Historically, some other, but equivalent 
formulations of machines were at first introduced independently by Alan Turing and 
Emil Post in 1936. A Turing machine can carry out any effective procedure provided it 
is correctly programmed. It consists of 
 
(a) a control box in which a finite program is placed, 
(b) a potentially infinite tape, divided lengthwise into squares, 
(c) a device for scanning, or printing on one square of the tape at a time, and for moving 

along the tape or stopping, all under the command of the control box. 
 
If the symbols used by a Turing machine are restricted to a stroke 1 and a blank ’, then 
a function computable function by a register machine can be proved to be computable 
by a Turing machine and vice versa. We must remember that every natural number x 
can be represented by a sequence of x strokes (for instance 3 by ***), each stroke on a 
square of the Turing tape. The blank ’ is used to denote that the square is empty (or the 
corresponding number is zero). In particular, a blank is necessary to separate sequences 
of strokes representing numbers. Thus, a Turing machine computing a function ƒ with 
arguments x1, . . ., xn, starts with tape . . . ∗ x1 ∗ x2 ∗ . . . ∗ xn ∗ . . . and stops with . . . ∗ 
x1 ∗ x2 ∗ . . . ∗ xn ∗ ƒ (x1, . . ., xn) ∗ . . . on the tape. 
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From a logical point of view, a general purpose computer - as constructed by associates 
of John von Neumann in America and independently by Konrad Zuse in Germany - is a 
technical realization of a universal Turing machine which can simulate any kind of 
Turing program. Analogously, we can define a universal register machine which can 
execute any kind of register program. Actually, the general design of a von-Neumann 
computer consists of a central processor (program controller), a memory, an arithmetic 
unit, and input-output devices. It operates step by step in a largely serial fashion. A 
present-day computer à la von Neumann is really a generalized Turing machine. The 
efficiency of a Turing machine can be increased by the introduction of several tapes, 
which are not necessarily one-dimensional, each acted on by one or more heads, but 
reporting back to a single control box which coordinates all the activities of the 
machine. Thus, every computation of such a more effective machine can be done by an 
ordinary Turing machine. Concerning the complex system approach, even a Turing 
machine with several multidimensional tapes remains a sequential program-controlled 
computer, differing essentially from self-organizing systems like neural networks. 
 
Besides Turing- and register machines, there are many other mathematically equivalent 
procedures for defining computable functions. Recursive functions are defined by 
procedures of functional substitution and iteration, beginning with some elementary 
functions (for instance, the successor function n(x) = x + 1) which are obviously 
computable. All these definitions of computability by Turing machines, register 
machines, recursive functions, etc., can be proved to be mathematically equivalent. 
Obviously, each of these precise concepts defines a procedure which is intuitively 
effective. 
 
Thus, Alonzo Church postulated his famous thesis that the informal intuitive notion of 
an effective procedure is identical with one of these equivalent precise concepts, such as 
that of a Turing machine. Church's thesis cannot be proved, of course, because 
mathematically precise concepts are compared with an informal intuitive notion. 
Nevertheless, the mathematical equivalence of several precise concepts of computability 
which are intuitively effective confirms Church's thesis. Consequently, we can speak 
about computability, effectiveness, and computable functions without referring to 
particular effective procedures ("algorithms") like Turing machines, register machines, 
recursive functions, etc. According to Church's thesis, we may in particular say that 
every computational procedure (algorithm) can be calculated by a Turing machine. So 
every recursive function, as a kind of machine program, can be calculated by a general 
purpose computer. 
 
Now we are able to define effective procedures of decision and enumerability, which 
were already demanded by Leibniz' program of a mathesis universalis. The 
characteristic function fM of a subset M of natural numbers is defined as fM (x) = 1 if x is 
an element of M, and as fM (x) = 0 otherwise. Thus, a set M is defined as effectively 
decidable if its characteristic function saying whether or not a number belongs to M is 
effectively computable (or recursive). 
 
A set M is defined as effectively (recursively) enumerable if there exists an effective 
(recursive) procedure f for generating its elements, one after another (formally f (1) = x1, 
f (2) = x2, . . . for all elements x1, x2 . . . from M). It can easily be proved that every 
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recursive (decidable) set is recursively enumerable. But there are recursively 
enumerable sets which are not decidable. These are the first hints that there are limits to 
Leibniz' originally optimistic program, based on a belief in universal decision 
procedures. 
 
Concerning natural and artificial intelligence, the paradigm of effective computability 
implies that mind is represented by program-controlled machines, and mental structures 
refer to symbolic data structures, while mental processes implement algorithms. 
Historically the hard core of AI was established during the Dartmouth Conference in 
1956 when leading researchers such as John McCarthy, Alan Newell, Herbert Simon, 
and others from different disciplines, formed the new scientific community of AI. They 
all were inspired by Turing's question "Can machines think?" in his famous article 
"Computing machinery and intelligence" in 1950. 
 
In the tradition of Leibniz' mathesis universalis one could believe that human thinking 
could be formalized with a kind of universal calculus. In a modern version one could 
assume that human thinking could be represented by some powerful formal 
programming language. In any case, formulas are sequences of symbols which can be 
codified by natural numbers. Then assertions about objects would correspond to 
functions over numbers, conclusions would follow from some kind of effective 
numerical procedure, and so on. 
 
Actually, the machine language of a modern computer consists of sequences of 
numbers, codifying every state and procedure of the machine. Thus, the operations of a 
computer can be described by an effective or recursive numerical procedure. 
 
If human thinking can be represented by a recursive function, then by Church's thesis it 
can be represented by a Turing program which can be computed by a universal Turing 
machine. Thus, human thinking could be simulated by a general purpose computer and, 
in this sense, Turing's question must be answered with "yes". The premise that human 
thinking can be codified and represented by recursive procedures is, of course, doubtful. 
Even processes of mathematical thinking can be more complex than recursive functions. 
Recursiveness or Turing computability is only a theoretical limit of computability 
according to Church's thesis. 
 
Complexity classes of problems (or corresponding functions) can be characterized by 
complexity degrees, which give the order of functions describing the computational 
time (or number of elementary computational steps) of algorithms (or computational 
programs) depending on the length of their inputs. The length of inputs may be 
measured by the number of decimal digits. According to the machine language of a 
computer it is convenient to codify decimal numbers into their binary codes with only 
binary numbers 0 and 1 and to define their length by the number of binary digits. For 
instance, 3 has the binary code 1 1 with the length 2. A function f has linear 
computational time if the computational time of f is not greater than c n≅  for all inputs 
with length n and a constant c. 
 
A function f has quadratic computational time if the computational time of f is not 
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greater than 2c n≅  for all inputs with length n and a constant c. A function f has 
polynomial computational time if the computational time of f is not greater than 
c kn≅ , which is assumed to be the leading term of a polynomial p(n). A function f has 

exponential computational time of f is not greater than ( )c p nn≅ . Many practical and 
theoretical problems belong to the complexity class P of all functions which can be 
computed by a deterministic Turing machine in polynomial time.  
 
NP means the complexity class of functions which can be computed by a non-
deterministic Turing machine in polynomial time. By definition every P-problem is an 
NP-problem. But it is a crucial question of complexity theory whether P = NP or, in 
other words, whether problems which are solved by non-deterministic computers in 
polynomial time can also be solved by a deterministic computer in polynomial time. In 
his chapter, D. Thiel discusses some examples of NP-problems like the Satisfiability 
Problem (SAT), Travelling Salesman Problem (TSP), and Quadratic Assignment 
Problem (QAP) (see Simulated Annealing). 
 
Obviously, complexity theory delivers degrees for the algorithmic power of Turing 
machines or Turing-type computers. The theory has practical consequences for 
scientific and industrial applications. But does it imply limitations for the human mind? 
The fundamental questions of complexity theory (for example N = NP or N ≠  NP) 
refer to the measurement of the speed, computational time, storage capacity, and so on, 
of algorithms. It is another question how one sets out to find more or less complex 
algorithms. This is the creative work of a computer scientist which is not considered in 
the complexity theory of algorithms. 
 
On the other hand, Gödel's famous theorems are sometimes said to limit the 
mathematical power of computers and the human mind. His incompleteness theorem 
says that in every consistently axiomatized enlargement of formal number theory there 
is a (closed) formula which is not decidable. Actually, his theorem states that any 
adequate consistent arithmetical logic is incomplete in the sense that there exist true 
statements about the integers that cannot be proved within such a logic. Even if we 
enlarge our axiomatization by the undecidable formula, then there is another formula 
which is not decidable in the enlarged formalism.  
 
But Gödel's theorem is only a limitation on human thinking under some essential 
assumptions: we must accept theorem-proving as the key to human intelligence. The 
theorem can only be applied to a mind-model that consists of a machine with all its 
knowledge carefully formalized. Furthermore, Gödel's theorem only places limitations 
upon consistent machines, while fuzziness, inconsistency, and puzzles are typical 
features of human decisions. We would not survive very long if we required a long 
period of careful theorem-proving before deciding whether or not we should act. It 
should also be considered that Turing machines have a fixed data structure, while the 
human mind is open to novel experience and able to learn from its mistakes. So Gödel's 
theorem limits a machine as much as a human closing his or her mind to new 
information. 
 
- 
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