
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

COMPUTATIONAL INTELLIGENCE

K. Mainzer
Institute of Interdisciplinary Informatics, University of Augsburg, Germany

Keywords: Affective Computing, Artificial Intelligence, Cellular Automata,
Computability, Computational Complexity, Decidability, Genetic Programming,
Intelligent Agents, Internet, Knowledge-based Systems, Learning Algorithms, Neural
Networks, Swarm Intelligence, Ubiquitous Computing.

Contents

1. Review of Subject Articles
1.1.General Principles and Purposes of Computational Intelligence
1.2.Neural Networks
1.3.Simulated Annealing
1.4.Adaptive Systems
1.5.Biological Intelligence and Computational Intelligence
2. Introduction
3. Computability, Decidability, and Complexity
4. Computational Intelligence and Knowledge-based Systems
4.1.Beginning of Artificial Intelligence (AI)
4.2.Knowledge-based Systems and Problem Solving
5. Computational Intelligence and Neural Networks
5.1.Beginning of Computational Networks
5.2.Neural Networks and Learning Algorithms
6. Computational Life and Genetic Programming
6.1.Computational Growth and Cellular Automata
6.2.Computational Evolution and Genetic Programming
7. Computational Intelligence and Life in the World Wide Web
Glossary
Bibliography
Biographical Sketch

Summary

Can machines think? This famous question of Alan Turing has inspired computational
intelligence. The historical roots of computational intelligence stem back to the 17th
century and the program for mechanizing thinking (mathesis universalis). The modern
theory of computability distinguishes complexity classes of problems, meaning the
order of corresponding functions describing the computational time of their algorithms
or computational programs. Modern computer science is interested not only in the
complexity of universal problem solving but also in the complexity of knowledge-based
programs. Famous examples are expert systems simulating the problem solving
behavior of human experts in their specialized fields. But the algorithmic mechanization
of thinking with program-controlled computers has some severe obstacles which cannot
be overcome by growing computational capacities. For example, pattern recognition,
the coordination of movements, and other complex tasks of human learning cannot be

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

mastered by conventional computer programs. Artificial neural networks realize the
principles of complex dynamical systems. They are inspired by the successful technical
applications of nonlinear dynamics to solid-state physics, spin-glass physics, chemical
parallel computer, optical parallel computer, laser systems, and the human brain. There
are already some applications of artificial neural networks in neurobionics, medicine,
and robotics. Besides computational intelligence or "artificial intelligence" (AI) as a
classical discipline of computer science "artificial life" (AL) is a newgrowing field of
research. Genetic programming made computational evolution possible. Virtual agents
are designed with different degrees of autonomy, mobility, reactivity or learning
capabilities for communicating and cooperating with the Internet. Distributed
computational intelligence and life transform the World Wide Web into an
computational ecology with ubiquitous computing and e-commerce.

1. Review of Subject Articles

1.1. General Principles and Purposes of Computational Intelligence

L. Reznik considers computational intelligence as integrity of theories, applying
methods and models analogous to those demonstrated by biological intelligent systems
in problem solving and decision making. Among such theories are those which today
are often collected as 'soft computing'.

1.2. Neural Networks

I. Vajda describes the development and foundations of neural networks from
Rosenblatt's perceptron up to Kohonen's self-organizing maps and further present
approaches used as tools to solve practical problems without any biological analogies.

1.3. Simulated Annealing

From Statistical Thermodynamics to Combinatory Problem Solving D. Thiel presents
the principle of the Simulated Annealing (SA) algorithm, corresponding to Boltzmann's
thermodynamics, which has been particularly successful in solving various
combinatorial decision and optimisation problems of immense computational
complexity (e.a., statisfiability problem, travelling salesman problem, quadratic
assignment problem).

1.4. Adaptive Systems

R. Pla-Lopez suggests a general theory of adaptive systems changing their behavior
through interaction with their environment, in order to simulate the computational
intelligence of living systems.

1.5. Biological Intelligence and Computational Intelligence

G. A. Chauvet compares biological intelligence (e.a., motoric intelligence) with
computational intelligence which may be implemented on a computer by means of a
program or by means of a processor with an architecture designed for an analogical

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

representation of the physiological function. Such neuromimetic circuits may be used
for the replacement of deficient organs in medicine or for the execution of human
functions by machine.

2. Introduction

The five articles briefly commented summarize some of the main tendencies in today's
development of Computational Intelligence. But to gain better insight into the process,
and on the basis of these works, it is worthwhile to retrace the first historical steps in
this direction. The mechanization of thoughts begins with the invention of mechanical
devices for performing elementary arithmetic operations automatically. A mechanical
calculation machine executes serial instructions step by step. First, there is an input
mechanism by which a number is entered into the machine. A selector mechanism
selects and provides the mechanical motion to cause the addition or subtraction of
values on the register mechanism. The register mechanism is necessary to indicate the
value of a number stored within the machine, technically realized by a series of wheels
or disks. If a carry is generated because one of the digits in the result register advances
from 9 to 0, then that carry must be propagated by a carry mechanism to the next digit
or even across the entire result register. A control mechanism ensures that all gears are
properly positioned at the end of each addition cycle to avoid false results or jamming
the machine. An erasing mechanism has to reset the register mechanism to store a value
of zero.

Wilhelm Schickard (1592-1635), professor of Hebrew, oriental languages, mathematics,
astronomy, and geography, is presumed to be the first inventor of a mechanical
calculating machine for the first four rules of arithmetic. The adding and subtracting
part of his machine is realized by a gear drive with an automatic carry mechanism. The
multiplication and division mechanism is based on Napier's multiplication tables. Blaise
Pascal (1623-1662), the brilliant French mathematician and philosopher, invented an
adding and subtracting machine with a sophisticated carry mechanism which in
principle is still realized in our hodometers of today.

But it was Leibniz' mechanical calculating machine for the first four rules of arithmetic
which contained each of the mechanical devices from the input, selector, and register
mechanism to the carry, control, and erasing mechanism. The Leibniz machine became
the prototype of a hand calculating machine. If we abstract from the technical details
and particular mechanical constructions of Leibniz' machine, then we get a model of an
ideal calculating machine which in principle is able to calculate all computable
functions of natural numbers.

Leibniz (1646-1716) even designed a mechanical calculating machine for the binary
number system with only two digits 0 and 1, which he discovered some years earlier.
He described a mechanism for translating a decimal number into the corresponding
binary number and vice versa. As modern electronic computers only have two states 1
(electronic impulse) and 0 (no electronic impulse), Leibniz truly became one of the
pioneers of computer science.

Leibniz' historical machines suffered from many technical problems, because the

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

materials and technical skills then available were not up to the demands. Nevertheless,
his design is part of a general research program for a mathesis universalis intended to
simulate human thinking by calculation procedures ("algorithms") and to implement
them on mechanical calculating machines. Leibniz proclaimed two basic disciplines of
his mathesis universalis. An ars iudicandi should allow every scientific problem to be
decided by an appropriate arithmetic algorithm after its codification into numeric
symbols. An ars iveniendi should allow scientists to seeks and enumerate possible
solutions of scientific problems. Leibniz was deeply convinced that there are universal
algorithms to decide all problems in the world by mechanical devices.

In the 19th century it was the English mathematician and economist Charles Babbage
who not only constructed the first program-controlled calculation machine (the
"analytical engine") but also studied its economic and social consequences. A
forerunner of his famous book On the economy of machinery and manufactures in 1841
was Adam Smith's idea of economic laws, which paralleled Newton's mechanical laws.
In his book The Wealth of Nations, Smith described the industrial production of pins as
an algorithmic procedure and anticipated Henry Ford's idea of program-controlled mass
production in industry.

3. Computability, Decidability, and Complexity

The hand calculating machine can easily be generalized to Marvin Minsky's register-
machine. It allows the general concept of computability to be defined in modern
computer science. An ideal register machine has a finite number of registers which can
store any finite number of a desired quantity. The program of a register machine is
defined by two elementary procedures like adding and substracting a digit in a register.
Programs of these two elementary devices can be chained or combined with some
control mechanism. A numerical function is called computable by a register machine if
there is such a program combining the function. Historically, some other, but equivalent
formulations of machines were at first introduced independently by Alan Turing and
Emil Post in 1936. A Turing machine can carry out any effective procedure provided it
is correctly programmed. It consists of

(a) a control box in which a finite program is placed,
(b) a potentially infinite tape, divided lengthwise into squares,
(c) a device for scanning, or printing on one square of the tape at a time, and for moving

along the tape or stopping, all under the command of the control box.

If the symbols used by a Turing machine are restricted to a stroke 1 and a blank ’, then
a function computable function by a register machine can be proved to be computable
by a Turing machine and vice versa. We must remember that every natural number x
can be represented by a sequence of x strokes (for instance 3 by ***), each stroke on a
square of the Turing tape. The blank ’ is used to denote that the square is empty (or the
corresponding number is zero). In particular, a blank is necessary to separate sequences
of strokes representing numbers. Thus, a Turing machine computing a function ƒ with
arguments x1, . . ., xn, starts with tape . . . ∗ x1 ∗ x2 ∗ . . . ∗ xn ∗ . . . and stops with . . . ∗
x1 ∗ x2 ∗ . . . ∗ xn ∗ ƒ (x1, . . ., xn) ∗ . . . on the tape.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

From a logical point of view, a general purpose computer - as constructed by associates
of John von Neumann in America and independently by Konrad Zuse in Germany - is a
technical realization of a universal Turing machine which can simulate any kind of
Turing program. Analogously, we can define a universal register machine which can
execute any kind of register program. Actually, the general design of a von-Neumann
computer consists of a central processor (program controller), a memory, an arithmetic
unit, and input-output devices. It operates step by step in a largely serial fashion. A
present-day computer à la von Neumann is really a generalized Turing machine. The
efficiency of a Turing machine can be increased by the introduction of several tapes,
which are not necessarily one-dimensional, each acted on by one or more heads, but
reporting back to a single control box which coordinates all the activities of the
machine. Thus, every computation of such a more effective machine can be done by an
ordinary Turing machine. Concerning the complex system approach, even a Turing
machine with several multidimensional tapes remains a sequential program-controlled
computer, differing essentially from self-organizing systems like neural networks.

Besides Turing- and register machines, there are many other mathematically equivalent
procedures for defining computable functions. Recursive functions are defined by
procedures of functional substitution and iteration, beginning with some elementary
functions (for instance, the successor function n(x) = x + 1) which are obviously
computable. All these definitions of computability by Turing machines, register
machines, recursive functions, etc., can be proved to be mathematically equivalent.
Obviously, each of these precise concepts defines a procedure which is intuitively
effective.

Thus, Alonzo Church postulated his famous thesis that the informal intuitive notion of
an effective procedure is identical with one of these equivalent precise concepts, such as
that of a Turing machine. Church's thesis cannot be proved, of course, because
mathematically precise concepts are compared with an informal intuitive notion.
Nevertheless, the mathematical equivalence of several precise concepts of computability
which are intuitively effective confirms Church's thesis. Consequently, we can speak
about computability, effectiveness, and computable functions without referring to
particular effective procedures ("algorithms") like Turing machines, register machines,
recursive functions, etc. According to Church's thesis, we may in particular say that
every computational procedure (algorithm) can be calculated by a Turing machine. So
every recursive function, as a kind of machine program, can be calculated by a general
purpose computer.

Now we are able to define effective procedures of decision and enumerability, which
were already demanded by Leibniz' program of a mathesis universalis. The
characteristic function fM of a subset M of natural numbers is defined as fM (x) = 1 if x is
an element of M, and as fM (x) = 0 otherwise. Thus, a set M is defined as effectively
decidable if its characteristic function saying whether or not a number belongs to M is
effectively computable (or recursive).

A set M is defined as effectively (recursively) enumerable if there exists an effective
(recursive) procedure f for generating its elements, one after another (formally f (1) = x1,
f (2) = x2, . . . for all elements x1, x2 . . . from M). It can easily be proved that every

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

recursive (decidable) set is recursively enumerable. But there are recursively
enumerable sets which are not decidable. These are the first hints that there are limits to
Leibniz' originally optimistic program, based on a belief in universal decision
procedures.

Concerning natural and artificial intelligence, the paradigm of effective computability
implies that mind is represented by program-controlled machines, and mental structures
refer to symbolic data structures, while mental processes implement algorithms.
Historically the hard core of AI was established during the Dartmouth Conference in
1956 when leading researchers such as John McCarthy, Alan Newell, Herbert Simon,
and others from different disciplines, formed the new scientific community of AI. They
all were inspired by Turing's question "Can machines think?" in his famous article
"Computing machinery and intelligence" in 1950.

In the tradition of Leibniz' mathesis universalis one could believe that human thinking
could be formalized with a kind of universal calculus. In a modern version one could
assume that human thinking could be represented by some powerful formal
programming language. In any case, formulas are sequences of symbols which can be
codified by natural numbers. Then assertions about objects would correspond to
functions over numbers, conclusions would follow from some kind of effective
numerical procedure, and so on.

Actually, the machine language of a modern computer consists of sequences of
numbers, codifying every state and procedure of the machine. Thus, the operations of a
computer can be described by an effective or recursive numerical procedure.

If human thinking can be represented by a recursive function, then by Church's thesis it
can be represented by a Turing program which can be computed by a universal Turing
machine. Thus, human thinking could be simulated by a general purpose computer and,
in this sense, Turing's question must be answered with "yes". The premise that human
thinking can be codified and represented by recursive procedures is, of course, doubtful.
Even processes of mathematical thinking can be more complex than recursive functions.
Recursiveness or Turing computability is only a theoretical limit of computability
according to Church's thesis.

Complexity classes of problems (or corresponding functions) can be characterized by
complexity degrees, which give the order of functions describing the computational
time (or number of elementary computational steps) of algorithms (or computational
programs) depending on the length of their inputs. The length of inputs may be
measured by the number of decimal digits. According to the machine language of a
computer it is convenient to codify decimal numbers into their binary codes with only
binary numbers 0 and 1 and to define their length by the number of binary digits. For
instance, 3 has the binary code 1 1 with the length 2. A function f has linear
computational time if the computational time of f is not greater than c n≅ for all inputs
with length n and a constant c.

A function f has quadratic computational time if the computational time of f is not

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

greater than 2c n≅ for all inputs with length n and a constant c. A function f has
polynomial computational time if the computational time of f is not greater than
c kn≅ , which is assumed to be the leading term of a polynomial p(n). A function f has

exponential computational time of f is not greater than ()c p nn≅ . Many practical and
theoretical problems belong to the complexity class P of all functions which can be
computed by a deterministic Turing machine in polynomial time.

NP means the complexity class of functions which can be computed by a non-
deterministic Turing machine in polynomial time. By definition every P-problem is an
NP-problem. But it is a crucial question of complexity theory whether P = NP or, in
other words, whether problems which are solved by non-deterministic computers in
polynomial time can also be solved by a deterministic computer in polynomial time. In
his chapter, D. Thiel discusses some examples of NP-problems like the Satisfiability
Problem (SAT), Travelling Salesman Problem (TSP), and Quadratic Assignment
Problem (QAP) (see Simulated Annealing).

Obviously, complexity theory delivers degrees for the algorithmic power of Turing
machines or Turing-type computers. The theory has practical consequences for
scientific and industrial applications. But does it imply limitations for the human mind?
The fundamental questions of complexity theory (for example N = NP or N ≠ NP)
refer to the measurement of the speed, computational time, storage capacity, and so on,
of algorithms. It is another question how one sets out to find more or less complex
algorithms. This is the creative work of a computer scientist which is not considered in
the complexity theory of algorithms.

On the other hand, Gödel's famous theorems are sometimes said to limit the
mathematical power of computers and the human mind. His incompleteness theorem
says that in every consistently axiomatized enlargement of formal number theory there
is a (closed) formula which is not decidable. Actually, his theorem states that any
adequate consistent arithmetical logic is incomplete in the sense that there exist true
statements about the integers that cannot be proved within such a logic. Even if we
enlarge our axiomatization by the undecidable formula, then there is another formula
which is not decidable in the enlarged formalism.

But Gödel's theorem is only a limitation on human thinking under some essential
assumptions: we must accept theorem-proving as the key to human intelligence. The
theorem can only be applied to a mind-model that consists of a machine with all its
knowledge carefully formalized. Furthermore, Gödel's theorem only places limitations
upon consistent machines, while fuzziness, inconsistency, and puzzles are typical
features of human decisions. We would not survive very long if we required a long
period of careful theorem-proving before deciding whether or not we should act. It
should also be considered that Turing machines have a fixed data structure, while the
human mind is open to novel experience and able to learn from its mistakes. So Gödel's
theorem limits a machine as much as a human closing his or her mind to new
information.

-

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

-
-

TO ACCESS ALL THE 26 PAGES OF THIS CHAPTER,
Visit: http://www.eolss.net/Eolss-sampleAllChapter.aspx

Bibliography

Anderson J. A., Rosenfeld E. (eds.) (1988). Neurocomputing. Foundations of Research. The MIT Press,
Cambridge MA [Interdisciplinary guide to the background of concepts in neuroscience, computer science,
engineering, physics, cognitive science, and psychology]

Farmer D., Toffoli T., Wolfram S. (eds.) (1984). Cellular Automata. North-Holland, Amsterdam
[Proceedings of an interdisciplinary workshop with leading experts of cellular automata]

Kohonen T. (1989). Self-Organization and Associative Memory. Springer, Berlin [Foundations of self-
organizing neural maps and unsupervised learning algorithms]

Mainzer K. (1995). Computer - Neue Flügel des Geistes ? De Gruyter, Berlin/New York [History and
Foundations of Computer Science with logical and epistemic analysis of artificial intelligence]

Mainzer K. (1997). Thinking in Complexity. The Complex Dynamics of Matter, Mind, and Mankind.
Springer, New York [3rd enlarged introduction into nonlinear complex systems and their application in
natural sciences, brain research, computer science, economics, social sciences and philosophy]

Mainzer K.(1997). Gehirn, Computer, Komplexität. Springer, Berlin [Introduction to brain research,
artificial intelligence, and theory of neural networks]

Mainzer K. (1999). Computernetze und virtuelle Realität. Leben in der Wissensgesellschaft. Springer,
Berlin [Computational foundations of computer networks, artificial life, bioinformatics, virtual agents,
virtual reality and applications in the World Wide Web]

Neumann J. v. (1958). The Computer and the Brain. Yale University Press, New Haven [The computer
pioneer John von Neumann analyzed analogies between a general purpose computer and the human
brain.]

Picard R. W. (1997). Affective Computing. MIT Press, Cambridge MA [If we want computers to be
genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize,
understand, even to have and express emotions.]

Rothermel K., Popescu-Zeletin R. (eds.) (1997). Mobile Agents. Springer, New York [Overview on
agents which can be sent by bytecodes into the World Wide Web without online connection to the user]

Biographical Sketch

Prof. Dr. Klaus Mainzer, born 1947, studied Mathematics, Physics and Philosophy. After his Ph.D.
(1973) and Habilitation for Philosophy (1979) at the University of Münster, he was Heisenberg scholar
(1980), Professor for Foundations and History of Mathematical Science (1981-1988), and Vicepresident
of the University of Konstanz (1985-1988). Since 1988 he is full professor for Philosophy of Science,
director of the Institute of Philosophy and director of the Institute of Interdisciplinary Computer Science
at the University of Augsburg. He is also professor of the Bavarian Elite Academy (Munich) and member
of several interdisciplinary institutions (e.a. Gottlieb Daimler and Karl Benz Foundation). Since 1996 he
is president of the German Society for Complex Systems and Nonlinear Dynamics.
He wrote books on "History of Geometry" (B.I.: German edition 1980), "Symmetries of Nature" (De
Gruyter: German edition 1988, English translation 1996); "Thinking in Complexity. The Complex
Dynamics of Matter, Mind, and Mankind" (Springer: English edition 1994, 3rd English edition 1997,

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-46-04-00

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

SYSTEMS SCIENCE AND CYBERNETICS – Vol. III - Computational Intelligence - K. Mainzer

©Encyclopedia of Life Support Systems (EOLSS)

Japanese translation 1997, Chinese translation 1999), "Computer - New Wings of the Mind?" (De
Gruyter: German edition 1994, 2nd German edition 1995), "Time" (C.H. Beck: 1995, 3rd German edition
1999), "Matter" (C.H. Beck: German edition 1996, Chinese translation 2000), "Brain, Computer,
Complexity" (Springer: German edition 1997), "Computer Networks and Virtual Reality" (Springer:
German edition 1999), "Hawking" (Herder: German edition 2000).
He also edited various books on „Numbers" (Springer: German edition 1983, 3rd English edition 1990,
Japanese translation 1992, French translation 1999); „Philosophy and Physics of Space-Time" (Spektrum:
1988, 2nd German edition 1994), "The Beginning of the Universe" (C.H. Beck: 1989, 2nd German edition
1990), "How many Lives has Schrödinger's Cat? Physics and Philosophy of Quantum Mechanics"
(Spektrum: 1990, 2nd German edition 1996), "The Question of Life" (Piper: German edition 1990),
"Natural Sciences and Humanities" (Springer: German edition 1990), "Economy and Ecology" (P. Haupt:
Swiss edition 1993), "Quanta, Chaos, and Demons. Epistemic Aspects of Modern Physics" (B.I.: German
edition 1994), "From Simplicity to Complexity" (Vieweg: English edition 1998), "Complex Systems and
Nonlinear Dynamics in Nature and Society" (Springer: German edition 1999).

