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Summary 
 
DNA forensics is a discipline in which genetic variations at DNA level is used to aid in 
forensic investigations to attribute the source of biological samples collected in the 
context of investigations. Knowledge of human genome diversity as well as operational 
biological characteristics of DNA markers are essential in selecting genetic markers that 
are useful in DNA forensics, and in assessing the statistical strength of DNA evidence. 
For the latter in particular, biological diversity within and between anthropologically 
defined populations plays a critical role in formulating protocols for evaluating 
statistical strength. This general thesis is presented in this chapter, with an introduction 
to the subject of DNA forensics and its brief historical development. For the different 
generic types of investigative cases handled in DNA forensics, commonly asked 
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questions of legal relevance are enumerated. It is argued that use of population genetic 
models of DNA variation, and empirical data on world-wide diversity in 
anthropologically defined populations, are being used to provide conservative 
assessment of DNA-based evidence which is helpful for source attribution of forensic 
specimens. The increasing popularity of DNA forensics demands attention to the future 
directions in which DNA forensics may be used for human identification, particularly in 
complex cases arising from mass disasters and natural calamities. The chapter ends with 
noting the research questions that are to be addressed in enhancing the power of 
applying the knowledge of human genome diversity in DNA forensics. 
 
1. Introduction 
 
Forensic investigations involving applications of recombinant DNA technology have 
been described as the most important tool for human identification, since Francis Galton 
invented the use of fingerprints for such a purpose (NRC 1996). In this chapter, our 
objective is to present a general overview of the current status of DNA forensics as it is 
used in criminal as well as in civil proceedings of legal investigations, to exemplify how 
understanding of anthropological diversity of human populations is used in this area, 
particularly to assess the statistical strength of forensic DNA evidence. We will begin 
with a brief history of DNA forensics; outline the generic problems handled in DNA 
forensics; describe the genetic markers used; and show that anthropological 
considerations of genetic diversity within and between populations play a critical role in 
assessing the statistical strength of DNA evidence findings in forensic investigations. 
 
2. A Brief History of DNA Forensics 
 
Jeffreys (1985a,b,c) is credited  as the inventor of “DNA Fingerprinting”. In these 
publications he and his colleagues described the technique of DNA profiling using DNA 
hybridization probes comprised of tandem repeats of core nucleotide sequences 
detecting multiple variable human DNA fragments by Southern blot hybridization. As 
the composite profile of genetic variation of such multiple genetic markers resemble bar 
codes, and creates virtually individualized patterns of each person tested, the term 
“DNA Fingerprinting” appeared legitimate. Even before that Wyman and White (1980) 
documented the existence of variable number of tandem repeats (VNTRs) at specific 
locations of the human genome, suggesting that such repeat variations of core sequences 
can generate genetic variation several orders larger than that detected by classical 
serological and biochemical markers.  
 
Though the commercialization of DNA testing by Jeffreys’ multilocus probes was 
started by Cellmark and Lifecodes in 1986, for technical reasons, in 1988 the Federal 
Bureau of Investigation (FBI) adopted the use of single locus probes to score multiple 
VNTR loci through repeated re-hybridization by Southern blotting (Butler 2005). In the 
same year, the UK Home Office and Foreign and Commonwealth Office ratified the use 
of DNA fingerprinting for resolving family relationships and verification of 
relationships in immigration cases (Home Office 1988). Used in parentage testing and 
forensics, this technology soon came under scrutiny during court proceedings for 
questions regarding procedural and scientific validity (Lander 1989), resulting in a 
bigger controversy with regard to the statistical strength of DNA evidence for positive 
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identification of criminals (Lewontin and Hartl 1991; Chakraborty and Kidd 1991).  
 
Invention of the polymerase chain reaction (PCR) technique of DNA amplification 
(Saiki et al 1988) paved the way of addressing the technical limitations of the Southern 
blot RFLP analysis of VNTR loci, when PCR-based DNA typing methods were 
introduced in DNA forensics (e.g. HLA-DQA1 typing method, Saiki et al 1986). 
Interestingly, at the same time the National Research Council (NRC 1992) issued the 
first report, part of which criticized the use of the RFLP method of DNA fingerprinting. 
Ironically, this report of NRC (called NRC-I) generated even more controversy, as 
alternatives of RFLP method of DNA typing became popular, and their suggestions for 
statistical interpretation of DNA evidence were flawed from the viewpoint of population 
genetic principles. In addition, their recommendations were vague enough to be misused 
in legal applications. Research and development work in this area, in the meantime, 
characterized over a dozen of genetic markers, at which genetic variations were 
ubiquitous (though not as great as those of the VNTR loci, individually), but 
operationally advantageous in the sense that they each produced discrete alleles, and 
could be typed with automation and ease of multiplexed PCR methods (Edwards et al 
1992; Hammond et al 1994). Called short tandem repeat (STR), the first commercial kit 
of PCR-based STR typing was introduced in 1993. 
 
The US Congress DNA Act of 1994 resulted in establishing a governing body (US 
National DNA Advisory Board) to delineate guidelines, quality control and quality 
assurance protocols, and adherence of standard operating procedures of DNA typing for 
forensic use. This body completed its chartered tasks in 2000, resulting in objective sets 
of criteria to be used in DNA forensics. The so-called “DNA war” lost its fury with the 
issue of a second National Research Council report, NRC-II (NRC 1996). Even before 
this, in UK a DNA database was established under the guidance of the Forensic Science 
Services (FSS) office. In USA, the FBI launched the combined DNA index System 
(CODIS) in 1998, by which time the PCR-based STR loci (13 of them, along with the 
sex-typing amelogenin locus) became the major platform of DNA typing for forensic 
use. With wide acceptance of DNA evidence, nationally as well as internationally, 
mitochondrial sequencing (of the hypervariable control region) and Y-chromosome 
linked STR loci were also added to the battery of forensic markers to assist in typing 
and interpretation of old or degraded evidence samples, and handle DNA mixture with 
further ease. Two more penta-nucleotide autosomal markers (Penta-D and Penta-E) 
were added to the battery to autosomal STR kits (Krenke et al 2002), and use of DNA 
forensics became widely popular worldwide, not only to solve criminal and civil cases 
of human identification on an individual basis, but also for victim identification of mass 
disaster cases (Beisecker et al 2005). 
 
3. Generic Problems Handled in DNA Forensics 
 
The DNA forensic problems related to human identification can be broadly classified in 
three groups: transfer evidence, DNA mixture analysis, and kinship determination. 
Transfer evidence relates to scenarios in which DNA profile of an evidence sample 
(from a crime scene) shows signatures of being DNA from a single source, and the 
problem is to identify the source of this DNA through comparison of the DNA profile of 
the evidence sample against those of one or more known persons tested. Three possible 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PHYSICAL (BIOLOGICAL) ANTHROPOLOGY – Dna Forensics: A Population Genetic And Biological Anthropologocal 
Perspective - Ranajit Chakraborty and Ranjan Deka 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

outcomes of such comparisons may arise: 
 

1. Exclusion; i.e. evidence sample profile does not match the profiles of the known 
persons tested, which results in exclusion of the tested persons as being the 
source of DNA in the evidence sample; 

2. Inconclusive; i.e. due to compromised nature of the evidence samples, their 
DNA profiles are ambiguous, but neither exclusion nor definitive inclusionary 
inference can be made; and 

3. DNA Match; i.e. at the typed loci, the DNA profile of the evidence sample is 
indistinguishable from the one found in one of the known persons tested. 

 
The obvious inference drawn under this third scenario is: the tested person cannot be 
excluded as the contributor of DNA found in the evidence sample. Statistical strength of 
the evidence is crucial in this third event, since the rarity of the profile would argue 
against any such coincidental match, should the known person be implicated wrongly in 
the case.  
 
As most forensic evidence sample are gathered from compromised conditions, by 
nature, in a great majority of cases, they show signatures of having DNA from multiple 
individuals. These are termed as DNA mixture, in which, like the transfer evidence 
scenarios, the results are of three types: 
 

1. Exclusion, occurring when the alleles present in the profiles of known persons 
are clearly absent in the mixture DNA of the evidence sample; 

2. Inconclusive; due to ambiguity of the definitive allele determinations in the 
mixture DNA; and 

3. Inclusion; implying that the known persons cannot be excluded as part 
contributors of DNA in the mixture sample. 

 
As before, this third alternative observation demands statistical assessment of the 
evidence. Because of the complexity of the mixture DNA profile, however, the nature of 
statistical evaluation of DNA mixtures is different (even though the principles are the 
same) from that of the transfer evidence, which we will discuss later. 
 
Kinship determination, the third type of DNA forensic problem, relates to comparisons 
of DNA profiles from evidence samples with the ones from one or more individuals 
biologically or affinally related. The objective is to determine whether or not the 
evidence sample could belong to a family member of the tested persons. The most 
popular cases of parentage analyses are indeed special cases of kinship determination, in 
which through contrasts of alleged father’s DNA profile against those of a mother-child 
pair, one attempts to determine whether or not the questioned person fathered the child. 
Kinship determination can also attempt to establish stated relationship between evidence 
sample and that of a family member, or to determine whether or not it represents the 
DNA of missing offspring of a tested married couple. While all three types of outcomes 
could result from this type of cases as well, statistics are needed to evaluate the strength 
of the inclusionary observations. Identification of victims of mass murders, man-made 
or natural disasters (like the terrorists’ attack of 11 September 2001, or the tsunami in 
South-east Asia in 2004) also fall under this category of DNA forensic issues. 
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4. Desired Characteristics of DNA Forensic Markers 
 
Though the desirable characteristics of genetic markers that increase their efficiency for 
application in DNA forensics are related with intra- and inter-population variation, a 
separate discussion of these features is useful. This is so because some operational 
features are also relevant as desired characteristics of DNA forensic markers. 
Historically, genetic markers assayed from coded gene products have been in use for 
kinship determination and parentage analyses. Blood groups, serum protein and 
enzyme, and immunological markers have been widely used in parentage analyses since 
the 1930s. While the efficiencies of such classical genetic markers in ascertaining 
biological relatedness, individually as well as collectively, have been discussed 
extensively in the genetic literature, one operational drawback of such markers is the 
fact that the evidence sample tested should provide uncompromised gene products, 
suitable enough to type the markers used. Further, barring the immunological markers 
(e.g. HLA and Gm factors), few of these classical markers have enough segregating 
alleles to provide high power of discrimination for distinguishing genotypic profiles 
from different individuals. Relatively, abundance of polymorphic DNA markers in the 
genome, together with ability to type DNA variation without the gene products, and 
stability of DNA under compromised condition, offer operational advantages of DNA 
typing for forensic applications. Further, as DNA can be extracted from a wide variety 
of biological materials (e.g. blood, saliva, body fluids, tissues, bones, teeth, etc.―in fact 
any material that contains nucleated cells), applications of genetic markers, which can 
be assayed with DNA technology, have a much broader scope in comparison to that 
using the classical genetic markers, such as blood groups, serum proteins and enzymes. 
 
Though the above-mentioned operational advantages are attainable by using several 
alternative platforms of DNA typing (e.g. Southern blot RFLP method, PCR-based 
oligo-nucleotide-specific hybridization technique, or PCR-based gel/capillary 
electrophoresis method), the markers amenable for PCR-based approaches are more 
advantageous, in the sense that a lower quantity of DNA is enough (e.g. 0.1-1ng versus 
50-500ng), degraded DNA is also typable (amplicon size of 500 bp is enough), 
genotyping reagents are non-isotopic, typing methods are rapid and can be automated, 
and the allele designations are discrete.  

 

Locus Name Chromosomal 
Location Repeat Motif Allele Range Number of 

Alleles Observed 
CSF1PO 5q33.3-34 TAGA 6-16 15 

FGA 4q28 CTTT 15-51.2 69 
TH01 11p15.5 TCAT 3-14 20 
TPOX 2p23-pter GAAT 6-13 10 
VWA 12p12-pter [TCTG][TCTA] 10-24 28 

D13S1358 3p [TCTG][TCTA] 9-20 20 
D5S818 5q21-31 AGAT 7-16 10 
D7S820 7q11.21-22 GATA 6-15 22 

D8S1179 8 [TCTA][TCTG] 8-19 13 
D13S317 13q22-31 TATC 5-15 14 
D16S539 16q24-qter GATA 5-15 10 
D18S51 18q21.3 AGAA 7-27 43 
D21S11 21q21 [TCTA][TCTG] 24-38 70 
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Penta-D 21q AAAGA 2.2-17 >16 
Penta-E 15q AAAGA 5-24 20 

 
Table 1. Characteristics of forensic STR loci 

 
Further, together the 13 or 15 short tandem repeat loci (see Table 1 for their list and 
other biological characteristics) currently used in the US forensic community, has been 
studied well enough in worldwide populations to address the initial population genetic 
criticisms which pertain to the relevance of biological and anthropological diversity in 
DNA forensics. 
 
- 
- 
- 
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