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Summary 
 
Gene regulation in higher animals, including humans (Homo sapiens) and mice (Mus 
musculus), is controlled through complex mechanisms that include epigenetics 
indicating “heritable changes in gene expression that occur without changes in DNA 
sequence.” Epigenetics dealt with in this overview describes how the molecular 
mechanism of gene regulation is controlled by selective activation or inactivation of 
genes, comprised of an upstream region, promotor region, protein-coding region, and 
downstream region. The CpG in DNA sequences is a substrate of DNA 
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methyltransferase, which forms methyl-CpG and signals the methyl-CpG to bind 
proteins. In the presence of stimulating transcription factors with DNA, the rate of gene 
transcription by RNA polymerase II is reduced by about 1/25 000 in the case of a gene 
heavily methylated and bound by methyl-CpG binding protein. Acetylation of histones 
stimulates the fluidity of chromatin, and after remodeling (reconstruction); the 
chromatin becomes ready for initiation of transcription. Deacetylation of histones 
suppresses the ability to be transcribed. The methylation of DNA in the sperm and egg 
is controlled differently, and the methylated DNA is demethylated during early 
embryogenesis. During development of the embryo, organized methylation of specific 
genes may proceed progressively, enabling the normal development of embryo to fetus 
to adult animals. 
 
1. Introduction 
 

 
 

Figure 1. Proteins of the mammalian DNA methylation system (Adapted from Bird and 
Wolffe, 1999) 

DNMT proteins each possess a region of strong similarity to cytosine DNA 
methyltransferases (MTase). MBD proteins share a well-conserved methyl-CpG-

binding domain (MBD). The COOH-terminal “replication” box in DNMT1 is required 
for localization to replication complexes. CxxCxxC domains occur in both MBD1 and 

DNMT1. (GR)n and (E)12 refer to glycine-arginine and glutamic acid repeats, 
respectively. The “repair” domain of MBD4 is a T-G mismatch glycosylase. TRD refers 
to the transcriptional repression domain of MeCP2. The arrowhead on MBD2 marks an 
AUG at the NH2-terminus of a potential translation product called MBD2b, which is a 
candidate demethylase. Splice variant forms occur, but for simplicity are not shown. 
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In the process of gene regulation in mammals, numerous transcription factors, DNA 
methylation, histone acetylation and deacetylation, the formation and remodeling of 
chromatin all occur co-operatively to support normal development of the embryo from 
the fetal stage to adulthood. In relation to inactive heterochromatin, the methylation of 
cytosine in CpG suppresses the expression of genes. The methylation of CpG, the 
methyl-CpG (mCpG) in the promoter region and also around the initiation point for 
transcription of a gene, effectively inhibits gene expression. 
The methyl-CpG constitutes 60–90% of CpG in the genome, and non-methylated CpG 
is found as a cluster, frequently observed in the promoter region of a gene. Such non-
methylated regions of about 1 Kbp constitute 15% of the human genome, and are called 
“CpG islands.” From the pattern of bulk DNA methylation, heterochromatin and 
retrotransposon DNA repeats are heavily methylated. 

 
Complex proteins designated methyl-CpG binding protein are known, which control the 
activity of histone deacetylase and chromatin remodeling in response to methyl-CpG. 
Five groups of methyl-CpG binding proteins, MBD1, MBD2, MBD3, MBD4, and 
MeCP2 have been identified in humans. 
 

 
 
Figure 2. DNA methylation and the dynamic range of transcription rate (Adapted from 

Bird and Wolffe, 1999) 
DNA methylation may expand the range of transcriptional regulation beyond that 
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achievable by chromatin alone. Transcriptional activators can raise transcriptional 
activity above basal levels. It is proposed that these activators can achieve the same 
efficiency of transcription from chromatin, and chromatin templates assembled on 

methylated DNA; however, the range of transcriptional regulation is increased greatly 
under these latter conditions through the contribution of chromatin and DNA 

methylation to the reduction of basal transcriptional efficiency. 
 

DNA methyltransferase recognizes CpG sequences and catalyses 5-methylcytosine 
formation. The methyl residue is donated by S-adenosyl methionine. The DNA 
methyltransferases consist of two groups: Maintenance methylase and de novo 
methylase. Four species of DNA methyltransferases—Dnmt1, Dnmt2, Dnmt3a and 
Dnmt3b—are known in mammals. Dnmt1 is essential for the maintenance of mCpG. 
Dnmt3a and Dnmt3b are known to function as de novo DNA methyltransferases. These 
are summarized in Figure 1. 

 
On the basis of the transcriptional activity of naked DNA, the protein complex of 
transcription factors (transcriptosome) stimulates the rate of gene transcription tenfold. 
The formation of chromatin with DNA incorporating histone octamers reduces the rate 
of transcription to one-fiftieth. Further methylation of DNA forming complexes with 
methyl-CpG binding proteins reduces the rate of transcription to one-fiftieth. Thus, 
methylated DNAs in chromatin forming complexes with methyl-CpG binding proteins 
have the transcriptional activity of approximately 1/2500 compared with naked DNA. 
Therefore, the rate of gene transcription with transcription factors is about 25 000-fold 
higher than that of a gene with methylated chromatin and methyl-CpG binding proteins, 
as summarized in Figure 2. 
 
2. DNA Methyltransferase in Mammals 
 
2.1. Dnmt1 
 
The enzyme is highly specific to hemimethyl-CpG, and functions as a maintenance 
DNA methyltransferase. The cDNA was first cloned in 1998 and designated as 
mammalian DNA methyltransferase, Dnmt. However, in 1998 the cDNAs for several 
other DNA methyltransferases were also cloned, and Dnmt was redesignated as Dnmt1. 
Dnmt1 knockout mice die during development of the early embryo, and the level of 
methylation of DNA is reduced significantly. Dnmt1 forms a complex with DNA 
replication coupling factor, and localizes in the nucleus during the DNA synthesis (S) 
phase of the cell cycle. Dnmt1 is expressed in all cells, and the level of expression is 
very high in rapidly growing cells. During cell division to eight cells after 
parthenogenesis, Dmnt1 stays in the cytosol, and then Dnmt1 localizes to the nucleus. In 
the NH2-terminal region, there is a signal domain supporting localization in the cytosol. 
Dnmt1 forms complexes with histone deacetylases, HDAC1 (Histone deacetylase 1) 
and HDAC2, and the tumor suppressor, Rb. 
 
2.2. Dnmt3a and Dnmt3b 
 
Using mouse embryonic stem (ES) cells, Dnmt1 mutants were obtained by consecutive 
gene disruption of both wild type alleles. The homozygous mutant cells were viable 
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with no obvious abnormalities, and had trace levels of DNA methyltransferase. Based 
on this work, new DNA methyltransferases, Dnmt3a and Dnmt3b were detected, that 
had the ability to catalyze de novo methylation of CpG in DNA. These two enzymes 
showed substrate specificity in transferring a methyl group to CpG in DNA, and showed 
no preference for hemi-methyl CpG in DNA. ES cells with no Dnmt3a and Dnmt3b 
activities by double knockout were established, and the cells were infected with 
retrovirus. The de novo methylation of integrated retroviral DNA was completely 
lacking in the double knockout cells. Dnmt1 could not complement the deficiency. 
Dnmt3b is specifically required for the methylation of centromeric minor satellite 
repeats. Human mutations of DNMT3B are detected in ICF syndrome, which causes a 
developmental defect with hypomethylation of pericentromeric repeats. 
 
Dnmt2 is known to be very similar to the COOH-terminus region of Dnmt1, but its 
enzymatic activity is not yet known. 
 
The pattern of DNA methylation by DNA methyltransferase suggests that the process 
contains a method of selecting the CpG and hemimethyl-CpG in specific regions of 
chromatin. Such a selection mechanism for DNA methylation may lead to selection of 
cell lineages during development of the embryo. 
 
3. DNA Methyltransferase Defective Mice 
 
DNA methyltransferase 1 knockout mice (Dnmt1) cease development during the middle 
stage of embryogenesis, corresponding to eight days in the wild type, and the mice die 
at nine to ten days. ES cells of Dnmt1 show very low levels of DNA methylation. ES 
cells divide normally, as in wild type ES cells. However, when they were treated to 
induce embryonic development, the cells died. The genes for de novo DNA 
methyltransferase, Dnmt3a and Dnmt3b were knocked out, and the Dnmt3a-/- amutant 
mice were almost normal at birth. However, they died at three to four weeks of age. 
Embryos with Dnmt3b-/- mutant genes die at various developmental stages. The double 
mutants Dnmt3a-/-, Dnmt3b-/- showed more severe defects, and the embryos died at 
earlier stages than Dnmt1-/- mutant mice. 
- 
- 
- 
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