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Summary 

The different cell types in the nervous system are briefly introduced. The basis of 
membrane potentials is dealt with together with the genesis of action potentials. The 
general properties of the junctions of nerve cells—synapses—are described as well. 
Furthermore, the two main classes of synaptic receptors—ionotropic and 
metabotropic—are overviewed, with a brief description of their functional principles.  
 
1. Introduction 

1.1. Nerve Cells 

There are two principal classes of cells in the nervous system: nerve cells (neurons) and 
glial cells. The number of neurons in the human brain has been estimated to be of the 
order of 1011, however, glial cells far outnumber neurons by 10- to 50-fold. Neurons are 
in contact with other neurons by means of synapses. A typical neuron possesses 1000–
2000 synapses, and a similar number of synapses originating from other neurons is 
attached to its plasma membrane, though these numbers vary tremendously from neuron 
to neuron. A typical neuron possesses morphologically distinct parts: the cell body 
(soma), axon (neurite), and dendrites and synaptic terminals (nerve endings) (see Figure 
1). All these regions have roles in information transfer (i.e., generation of action 
potentials and communication of these signals from cell to cell). The cell body is the 
principal metabolic center that, together with the cytoplasmic endoplasmic reticulum, 
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produces proteins needed in the signal handling. Furthermore, it gives rise to the axon, a 
long tubular appendage, and the arbor of dendrites. The initial segment of an axon, the 
axon hillock, is the site for triggering action potentials that spread over the whole 
neuronal plasma membrane and propagate to the nerve endings. A great number of 
axons are wrapped in a myelin sheath, a protein–lipid complex made up of many layers 
of the membrane of Schwann cells or oligodendrocytes. This myelin sheath envelops 
the axon except at the nodes of Ranvier. The end region of the axon is also 
unmyelinated.  

 

Figure 1. A typical peripheral neuron with Schwann cells wrapping its axon with the 
myelin sheath 

Note: The myelin sheath is discontinuous at regular intervals (nodes of Ranvier). 

1.2. Glial Cells 

Glial cells are classified into microglia and macroglia. Microglia are phagocytes 
activated by infections and injury. Three types of macroglial cells abound in the 
vertebrate nervous system. The star-like astrocytes are the most numerous. Two 
subtypes of astrocytes are present. Fibrous astrocytes are found primarily in the white 
matter. Their name arises from the content of many intermediate filaments. 
Protoplasmic astrocytes, abounding in the gray matter, have granular cytoplasma. 
Oligodendrocytes and Schwann cells are both small in size and have scant processes. 
Oligodendrocytes are predominant in the central nervous system and Schwann cells in 
the peripheral nerves. Although not directly participating in impulse transmission, the 
glial cells are thought to have other important roles: 

Astrocytes participate in the maintenance of ionic homeostasis and re-uptake of 
neurotransmitters. At least in this manner they also participate in the processes of 
information transfer, though probably not being involved in electrical signaling. 

• Oligodendrocytes and Schwann cells produce myelin that electrically insulates 
axons. 

• Microglial cells are involved in the defense responses to noxious factors. 
• Astrocytes aid in forming the blood–brain barrier, so regulating the passage of 

substances from blood to brain. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

PHYSIOLOGY AND MAINTENANCE – Vol. V - Neurons, Action Potentials, and Synapses - Simo S. Oja and Pirjo Saransaari 

©Encyclopedia of Life Support Systems (EOLSS) 

 

• During brain development glial cells guide the migration of neurons into their 
final destinations. 

• Glial cells also form a supporting network for neurons, a function considered to 
be their only role in the past.  

 
2. Resting Membrane Potential 

The uneven distribution of electrically charged particles with limited permeabilities is 
the basis for generation of potential differences across the cell plasma membranes (see 
Ionic Channels of the Excitable Membrane). Neurons employ this general propensity of 
all cells for their specific actions in information transfer. There obtains about a –65 mV 
potential in a typical resting neuron (i.e., the inside of the cell is negatively charged in 
comparison with the outside). The phospholipid bilayer in the plasma membrane is 
selectively permeable to Na+, K+, Cl–, and Ca2+, and practically impermeable to 
predominantly negatively charged proteins of large molecular size. The concentration of 
Na+ is large outside the cell, whereas K+ and Ca2+ are enriched inside. Two ionic pumps 
are particularly important for the functions of nerve cells: the Na+–K+ pump and the 
Ca2+ pump. Both are able to transport ions against their concentration gradients by 
means of chemical energy derived from the breakdown of adenosine triphosphate (ATP). 
The ion channels in plasma membranes are selectively leaky for the above ions. 
Gradually they would allow an equilibration of the ionic gradients without the 
continuous functioning of these ion pumps, which in this manner maintain the 
membrane potential and nerve cell functions. 

One can calculate the equilibrium potential for each ion by knowing its charge and 
concentration ratio across the plasma membrane from the classical Nernst equation 
familiar from physical chemistry: 

Eion = 2.303 (RT/zF) log [ion]o/[ion]i (1) 

in which Eion is the ionic equilibrium potential, R the gas constant, T the absolute 
temperature, z the electrical charge of the ion, F the Faraday constant and [ion]o and 
[ion]i the ion concentrations outside and inside the cell, respectively. However, in this 
equation there is no term of the ion permeability. Moreover, the calculated equilibrium 
potentials for different ions are not identical and the actual membrane potentials 
registered from cells are a sum function of the equilibrium potentials of different ionic 
species. These matters are taken into consideration in the Goldman equation:  

Em = 61.54 log {(PK[K+]o + PNa[Na+]o)/(PK[K+]i + PNa[Na+]i)} (2) 

in which Em is the membrane potential of the cell, PK and PNa are the membrane 
permeabilities of K+ and Na+, respectively, and the other terms are the intracellular and 
extracellular concentrations of K+ and Na+ as in the above Nernst equation. In this 
Goldman equation the minor contributions of Cl– and Ca2+ are overlooked. 

In resting neurons, the permeability of K+ exceeds that of Na+. Consequently, the 
membrane potential of a neuron is near to the equilibrium potential of K+. Since the 
concentration of K+ inside the cell greatly exceeds the extracellular concentration, the 
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inside of a cell is negative in comparison to the outside. On activation, the permeability 
of the plasma membrane to Na+ abruptly increases several 100-fold. The membrane 
potential tends to approach the equilibrium potential of Na+. Since the extracellular 
concentration of Na+ is far greater than the intracellular concentration, the equilibrium 
potential of Na+ is about +60 mV in a typical neuron, estimated by means of the Nernst 
equation for Na+. The membrane potential of a neuron is reversed and also shortly 
becomes  positive. It is said that there obtains an overshoot during the peak action 
potential. This abrupt increase in Na+ permeability originates from the functional 
properties of voltage-dependent Na+ channels in plasma membranes. These channels 
exhibit a characterized pattern of behavior: 

• they are very fast to open, 
• they stay open for about only 1 ms and close again, and 
• they do not open again before the membrane potential is restored to a negative 

value. 

These properties determine the behavior of a neuron. When the membrane potential is 
lowered to a certain level—the excitation threshold—the Na+ channels are suddenly 
opened and the action potential ensues. The neuron is depolarized.  
 
3. Action Potential 

The action potentials obey the “all or none” law—once a stimulus is strong enough to 
exceed the threshold of excitation a fully fledged action potential ensues. If the stimulus 
is subthreshold in magnitude, it results only in a local lowering of the membrane 
potential, which does not propagate along the neuronal plasma membrane. An action 
potential is self-propagating in nature. It electrotonically depolarizes the membrane 
regions in front of it, spreading circularly in all directions from the site of its origin and 
also traversing the axon in both up and down directions. While the conduction of 
impulses occurs in unmyelinated nerve cells in this manner, the mode of impulse 
propagation in myelinated neurons is saltatory in nature. Depolarization in them jumps 
from one Ranvier node to the next. In this manner the velocity of conduction is greatly 
increased in thick axons, but not in tiny axons. These latter axons are, therefore, mostly 
unmyelinated. In general, in both myelinated and unmyelinated axons the conduction 
velocity is greater if the axon is thicker. In a living animal, nerve impulses pass in one 
direction only along the axons: from receptors or synaptic junctions to the synaptic 
terminals of the axon. Such a type of conduction is called orthodromic. An axon is able 
to conduct action potentials also in the opposite direction. This type of conduction is 
antidromic. Chemical synapses transmit impulses in only one direction, and. therefore 
antidromic depolarization waves wane when they meet the first synaptic site. 

The increase in Na+ permeability rapidly declines after the initiation of an action 
potential and the permeability of K+ also temporarily increases after a small delay 
(Figure 2). At the end of an action potential the permeability for K+ soon becomes even 
greater than in the resting cell, being the reason for a small but prolonged after-
hyperpolarization. During the abrupt increase in Na+ permeability, a neuron does not 
respond to new activation. This period is designed as an absolute refractory period. It 
limits the firing rate of a neuron to about 1000 Hz. In addition, it is difficult to initiate 
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another action potential in a neuron for several milliseconds after the absolute refractory 
period. This relative refractory period coincides with the negative after-potential owing 
to the temporarily increased K+ permeability. During action potential neurons lose some 
K+ and gain Na+, but only prolonged trains of depolarizations result in measurable 
changes in the ionic concentrations. The capacity of the Na+–K+ pump in plasma 
membranes is normally able to compensate for the leakage through ion channels. The 
function of the Na+–K+ pump is electrogenic in nature, since for three Na+ extruded 
from the cell two K+ are taken up. The coupling ratio of the pump is thus 3:2 and three 
positive charges move out the cell for the two moving in. An increase diminishes and a 
decrease in extracellular Ca2+ increases neuronal excitability. The reason for this is the 
availability of Ca2+ for the processes associated with the synaptic events.  

 

Figure 2. (A) Time course on an action potential showing the spike potential with the 
overshoot and after-hyperpolarization. (B) The changes in Na+ and K+ conductances 

underlying the action potential. 
Notes: The rapid and transient increase in Na+ permeability initiates the propagating 
action potential. The inactivation of voltage-dependent Na+ channels and the delayed 

activation of K+ channels cause repolarization and generate transient hyperpolarization.  
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