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Summary 
 
Alkaliphiles are “extremophile” microorganisms that grow optimally at pH values above 9–
9.5, often exhibiting excellent growth at pH values up to 11. Their ecological niches are 
numerous, including both nonselective and selective natural and artificial environments. 
The diversity of alkaliphiles is enormous, encompassing many physiological and taxonomic 
types as well as different combinations of multiple stress-resistance. The interest in 
alkaliphiles relates to their biodiversity; the applications of alkaliphile natural products; 
alkaliphiles use as assay or bioremediation tools; and the fundamental insights gained from 
understanding the adaptations that facilitate protein function, cytoplasmic pH regulation 
and ATP synthesis at high pH. For the aerobic alkaliphilic Bacillus strains that are the most 
extensively studied alkaliphiles in this regard, the capacity for cytoplasmic pH regulation 
appears to correlate most closely with growth capacity in the alkaline range of pH. The 
genome of one alkaliphilic organism, facultatively alkaliphilic Bacillus halodurans C125, 
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has thus far been sequenced. This genome has a large number of transposases, suggestive 
of a role of transposition in alkaliphile evolution and, perhaps, ongoing adaptive capacity. 
A large number of sigma factors of the type responsive to extracytoplasmic signals in B. 
halodurans C125 and the large number of proteins that transiently change levels upon a 
sudden pH upshift of facultatively alkaliphilic Bacillus pseudofirmus OF4 suggest robust 
and complex stress responses. However, the proteome of B. pseudofirmus OF4 does not 
exhibit large shifts in the level of many of its membrane-associated proteins in steady-state 
pH 7.5- vs. pH 10.5-grown cells. Rather, a large fraction of the proteins that are crucial for 
alkaliphily appear to be expressed constitutively at significant levels. The extremophile is 
prepared to function as an alkaliphile even though that preparedness is adverse to its growth 
at, and may help set, the lower limit of pH for its growth. 
 
1. Introduction 
 
Alkaliphilic microorganisms have attracted interest because of their valuable natural 
products, their physiological interest and the intrinsic interest of both their ecological 
niches and their diversity. These microorganisms are a subset of organisms that grow under 
extreme conditions with respect to an environmental stress, organisms that are now called 
“extremophiles.” A true alkaliphile is generally considered to be an organism that exhibits 
optimal growth at pH values above 9–9.5. Were the cytoplasmic pH to be above this pH 
range, organisms studied before 2002 would not be viable. Even cytoplasmic pH values 
near 9 appear to greatly reduce the growth rate or abolish growth of most, if not all, 
microorganisms. Therefore, a true alkaliphile must be able to maintain a cytoplasmic pH 
that is more acidic than the external pH. This is in distinction to a much larger group of 
alkaline-tolerant microorganisms that have more modest capacities for pH homeostasis and 
that can tolerate but not grow optimally in a pH range of 9–10. 
 
Alkaliphiles are found among eukaryotic fungi as well as aerobic and anaerobic 
prokaryotes and archaea. The earliest reported alkaliphiles and the most intensively studied 
group of alkaliphiles to date are Bacillus species, i.e., Gram-positive, spore-forming, 
aerobic rods. The relationships among these Bacillus strains and between the alkaliphilic 
and nonalkaliphilic species has been the subject of several studies, which are cited in 
review articles listed in the bibliography of this article. Alkaliphilic Bacillus pasteurii and 
Bacillus alcalophilus were the first alkaliphiles described, in the 1930s. There was very 
little pursuit of these and other interesting alkaliphiles, however, until Koki Horikoshi 
initiated studies of both physiology and applications in the 1960s. Subsequently, several 
groups have done extensive work on the diversity of alkaliphiles and intensive work on the 
soda lakes that are a prime natural enrichment for these organisms. These areas are a focus 
of the first article under this topic (see Alkaline Environments and Biodiversity). An 
enormous expansion of work on the applications of alkaliphile natural products also 
occurred in parallel, as described in the third article (see Alkalo Tolerant Enzymes in 
Biotechnological Processes). Growth in physiological studies and structural biology 
approaches to alkaliphile proteins expanded later and at this writing (2002) is probably still 
in the early stages relative to the potential insights and interplay with applications. The 
author’s expertise is in this area as will be reflected in this overview. The particular area of 
acidic cell-wall polymers will additionally be considered in depth in the second article in 
this topic (see Adaptation Processes in Alkalophiles by Elevating the Cell-wall Acidity). 
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2. The Place of Alkaliphiles Among Extremophilic Bacteria 

2.1. Ecological Niches 

Alkaliphiles are readily isolated from environments that do not have elevated pH as well as 
from environments that are either natural or artificial enrichments. Most of the organisms 
isolated from “neutral environments” are thought to have alkaline micro-environments, 
e.g., a high content of alkaline clay in some soils. The alkaliphiles isolated from such 
environments are most often “facultative alkaliphiles” that can grow in a broad pH range 
from near neutral to pH values well above 10. “Obligate alkaliphiles,” which grow in a 
more restricted, highly alkaline range, are more commonly isolated from alkaline 
enrichments, e.g., some Bacillus alcalophilus strains isolated from indigo dye plant 
effluents. Extreme haloalkaliphiles, that combine a requirement of both high pH and high 
salt for optimal growth, are more generally restricted in their distribution than the 
nonhalophilic alkaliphiles, and are primarily found in specific selective environments such 
as the alkaline and soda lakes. Microenvironments can be discerned even in the highly 
selective environment of some soda lakes. For example, there are edge areas in some of 
these lakes that undergo periodic swings in alkalinity and/or salinity. This, in turn, is 
reflected in the characteristics of the alkaliphile flora. 

2.2. Diversity of Organisms 

While the most intensively studied aerobic alkaliphiles are Bacillus species, the prokaryotic 
aerobic alkaliphiles also include Micrococcus, Pseudomonas, and the actinomycete 
Streptomyces. There are also lower eukaryotic alkaliphiles, yeasts, and fungi. In addition to 
a growing group of thermophilic, anaerobic alkaliphiles among the archaea, prokaryotic 
anaerobic alkaliphiles have also been studied. These include species of Clostridium and an 
interesting Amphibacillus whose membrane-associated processes involve an interplay with 
NH4

+. In fact, given a prominence of ammonium ion in the biology of Bacillus pasteurii as 
well as Amphibacillus, there may emerge a group of alkaliphiles for which special 
ammonium-based strategies are critical for their alkaliphilic phenotype. Among the 
haloalkaliphiles, a plethora of novel archaea have been described. Their classification, first 
as Natronococcus or Natronobacterium, has undergone periodic revision and expansion as 
their numbers and diversity have increased. Haloalkaliphilic microorganisms also include 
diverse phototrophic organisms, methanogens, a large number of cyanobacteria, as well as 
spirochetes and sulfur-oxidizing organisms. 

2.3. Multiple Challenges 

Combined alkaliphily and halophily is common, with haloalkaliphiles exhibiting optimal 
growth at pH values greater than 9 and optima for NaCl concentrations that may be in the 
5% or greater than 15% ranges (measured as mass per volume). The combined resistance to 
these challenges may be facilitated by some commonality in the adaptations that allow 
extracellular proteins to function at either high pH or high salinity. Perhaps also, elements 
of the Na+ cycle that are of importance in alkaliphily, such as an effective complement of 
Na+/H+ antiporters, may also help support halophily. Studies of the deep sea flora similarly 
indicate that barophilic and anaerobic alkaliphiles are well represented among the 
microbes. On the other hand, the combined capacity to withstand high pH and high 
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temperature had until recently been very infrequently observed and the examples were not 
extremely well adapted to either stress. There are now counter-examples, for instance, the 
hyperthermophilic archaeon Thermococcus alcaliphilus. It is worth examining whether, in 
fact, the adaptations for each of the individual stresses in hyperthermoalkaliphiles 
necessitates a change in strategy vis a vis the other as compared to other hyperthermophiles 
and extreme alkaliphiles. Or, the combination of extremes may be restricted to anaerobes 
and require some particular mode of metabolism or energy conservation. 
 
3. Genomics, Proteomics, and Adaptations to Alkaliphily 

3.1. An Alkaliphile Genome 

In the fall of 2000, the complete genome sequence of facultatively alkaliphilic Bacillus 
halodurans C125, the first and thus far only alkaliphile genome sequence, was reported by 
a group of collaborating scientists from the Japan Marine Science and Technology Center, 
the Nara Institute of Science and Technology, and Kyushu University in Japan. This 
4 202 353 base pair genome encodes approximately 4 066 proteins. A wealth of 
information is evident from initial analyses of the gene and predicted protein sequences. 
This treasury will no doubt grow with further data mining and experimental follow-up. 
Several general points of interest with respect to alkaliphily emerge. 
 
• The alkaliphile genome contains 112 transposase genes, as compared with the 10 such 

genes found in the genome of B. subtilis, the most extensively studied nonalkaliphilic 
Bacillus, which is not very phylogenetically distant from the sequenced alkaliphile. 
This suggests a possible role for transpositions in the evolutionary history of the 
alkaliphiles, perhaps related to incoming genetic material and perhaps relating to ease 
of rearrangements within the alkaliphile genome as an ongoing adaptive strategy. 

 
• The alkaliphile genome contains 11 sigma factors of the extracytoplasmic function 

family, i.e., that are generally associated with coordinating an appropriate set of gene 
expression responses for adaptation to particular stresses or extracellular signals. Of 
these 11 sigma factors, 10 are thus far unique to B. halodurans C125, suggesting that 
the stress responses of alkaliphiles may have some specificity to them. 

 
• Only 18.3% of the predicted protein coding sequences had no match in the protein 

databases. Also, the genome and proteome size were in the same range as for B. 
subtilis. These observations suggest that this facultative alkaliphile, capable of growth 
both at neutral and highly alkaline pH, did not encode a large percentage of alternate 
proteins for use only in part of their pH range. 

 
• The alkaliphile genome appears to encode a significantly lower aggregate number of 

antibiotic-resistance and multi-drug resistance proteins than B. subtilis, perhaps 
reflecting the inefficacy of many of the natural antibiotics encountered by other soil or 
water organisms in the highly alkaline milieu of extreme alkaliphiles. As noted below, 
this could make alkaliphiles useful as organisms in which to screen for novel 
antibiotics. 
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