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Summary 
 
Metal efflux in metallophiles is accomplished by a multitude of different transporters. 
P-type ATPases are primary transporters because they are driven by ATP-hydrolysis 
and thus are highly efficient. Secondary or additional transporters belong to the 
resistance nodulation cell division (RND), the cation diffusion family (CDF) or the 
Major Facilitator Superfamily (MFS). Members of these families are probably proton 
driven. RND proteins are the core of a transport complex that encompasses both the 
cytoplasmic and outer membrane. CDF and MFS proteins transport metals from the 
cytoplasm across the cytoplasmic membrane into the periplasmic space. Virtually all 
microorganisms possess metal efflux systems. Metallophiles however, excel in both, the 
abundance of members of different families of transporters and the multitude of 
redundant members of the same family. Mobile DNA that is frequently rearranged to 
create novel combinations of metal resistance determinants might be an adaptation to 
survive in environments with extremely high metal concentrations. 
 
1. Introduction 
 
Geochemical cycles operating near Earth’s surface have been altered fundamentally by 
microbial metabolisms ever since the origin of life. Life evolves in a context defined by 
physical and chemical surroundings that are constantly changing. Since the environment 
where life developed was probably rich in divalent metals, mechanisms for metal 
homeostasis are a requirement for life. The goal of this chapter is to describe bacterial 
divalent metal efflux transporters and their role in metal homeostasis integrating recent 
findings. Since the transporters responsible for metal efflux are similar in metal 
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tolerant/metallophile bacteria such as Ralstonia metallidurans CH34 and "normal" 
bacteria such as Escherichia coli or Bacillus subtilis, the transporters will be discussed 
as related protein families. 
 
Microorganisms need to take up metal cations such as Co(II), Cu(I) or Cu(II), Fe(II) or 
Fe(III), Mn(II), Ni(II), and Zn(II) because they are required as micronutrients for vital 
cell functions. However, these metal cations are also toxic in high concentrations, 
making homeostatic resistance mechanisms necessary. In the last five years, it has 
become obvious that the differentiating between plasmid-borne resistance mechanisms 
and intrinsic chromosomal determinants responsible for metal homeostasis and 
trafficking is not as sharp as it once seemed. The same cell frequently contains both a 
nutrient uptake and a homeostasis efflux transport system for the same cation. This is 
well illustrated in the bacterial model organism E. coli. There are at least two transport 
systems responsible for zinc uptake and two to ensure efflux of excess zinc (Figure 1). 
 

 
 

Figure 1. Zinc transport systems in E. coli  
In this model the characterized zinc transport system are shown. Under conditions of 
zinc deficiency zinc is taken up by ZupT (the ygiE gene product) and ZnuABC. ZupT 

belongs to the ZIP family of metal transporters and ZnuABC is an ABC transport 
system. Uptake systems are not discussed in this chapter. Zinc-translocating efflux 
pumps are the P-type ATPase ZntA and the CDF protein ZitB. Interestingly, E. coli 

seems to have at least two transporters responsible for uptake and for efflux. ZnuABC 
and ZntA are both ATPases and are probably more powerful high affinity transporters 
than ZitB or ZupT who might be responsible for zinc homeostasis under physiological 

conditions. 
 

Metal transporters are members of one of three major transporter groups: P-type 
ATPases, ABC multicomponent ATPases, and membrane potential-driven non-ATPase 
transporters. Looking just at genes for divalent cation transporters, the rapidly 
increasing number of completed microbial genomes often contain close homologues on 
the chromosomes to previously identified plasmid-borne resistance determinants. For 
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example, the genes for divalent cation efflux transporters such as homologues of the 
Escherichia coli chromosomal genes zntA or copA sometimes seem to be acquired by 
horizontal gene transfer. This observation is underscored by the observation that 
sequences cluster by cation specificity and function. They often do not follow the 
overall phylogenetic patterns of the particular microbes, as determined by sequence 
comparison of small subunit ribosomal RNAs. Rather, cation transporters are an 
example of where genes appear to have been exchanged in the course of evolution and 
selection by lateral gene transfer. A goal is to be able to predict accurately the cation 
specificity and direction (uptake or efflux) for members of cation transporters, based on 
sequence without resort to direct experiment. This goal has not been achieved. 
However, certain motifs and domains are conserved in divalent cation transporters, 
regardless of microbial ancestry. Recently it was shown that intracellular levels of zinc 
and copper are extremely low. Therefore, homeostatic mechanisms for divalent cations 
are widely found and required for life in rapidly fluctuating environments such as soils 
and waters, making it likely that transporters for divalent cations arose early in 
evolution. 
 
- 
- 
- 
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