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Summary  
 
On the fundamental level there are four known distinct types of interactions in Nature 
which are, in ascending order of their strength at energies 100GeV :gravitation, weak 
interactions (involved in radioactivity) , electromagnetism, and the strong interaction 
(responsible for binding nuclear matter).  All four interactions are gauge interactions 
and are due to a local symmetry of the physical world that holds at each point of space-
time.  On the fundamental level they have to be described within quantum field theory 
which provides a general framework for gauge interactions consistent with quantum 
mechanics and Lorentz symmetry.  When treated as per-quantities at the quantum level. 
In order to reach a physically meaningful description it is necessary to remove these 
infinites order by order of perturbation theory.  In general this can be done if all 
interactions terms allowed by the symmetries of the system are included in the 
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Lagrangian .However, whereas for the three non-gravitational interactions this involves 
only readjustments of a finite number of masses and coupling constants, for gravity an 
infinite number of parameters is involved.  Gravity is said to be non renormalizable , 
whereas the other interactions  are renormalizable.  This is also reflected by the fact that 

the gravitational coupling constant (Newtons constant) ( ) 2
1.22 GeVNG

−19×10 has a 

negative quadratic mass dimension, whereas the other coupling constants are 
dimensionless.  On the classical (tree) level, non- gravitational interactions are therefore 
also invariant under rescaling of lengths and energies, whereas gravity is not.  On the 
quantum gauge symmetries, renormalization leads to energy –dependent effective 
coupling constants.  Under certain circumstances, the three relevant couplings converge 
at 162 10 GeV×  which suggests that these gauge symmetries unify to a larger internal 
symmetry.  In contrast, the gauge group of gravity consists of the general covariant 
space-time coordinate transformations and it is presently unclear how they may unify 
with the non-gravitational symmetries within ordinary quantum field theory.  A “Theory 
of Everything” may thus not even by a quantum field theory of particles and fields at 
all, but may rather reveal the currently known “fundamental “interactions as just 
effective field theories represent the low energy limits of a more fundamental 
description. Such a description could involve higher dimensional objects such as strings 
and branes in string theory. 
 
1. Introduction  
 
The fundamental interactions that we know of today are all described on the basis of 
quantum mechanics and relativity. We assume here that the reader is familiar with these 
subjects at least on an elementary level.  For an introduction to these subjects as well as 
historical information the reader can consult the contribution in Historical Review of 
Elementary Concepts In Physics. The current article provides an exposition of the 
modern description of interactions on a more formal level. 
 
The theory of quantum fields is the result of merging quantum mechanics with special 
relativity. Non-relativistic quantum mechanics describes the dynamics and interactions 
of a fixed number of particles. In contrast, special relativity requires a description 
allowing for processes which change the number of particles involved. This can already 
be seen from the fact that the relativistic relation. 
 

( )2 2 2Kk m= +ω                                                            (1) 
 
for a particle of mass m, momentum k, and energy E allows positive as well as negative 
energies. If one now expands a free charged quantum field ( )xψ into its energy –

momentum eigenfucntions ( ) ( ) ( ),k X exp k.Xku iαω  and interprets the coefficients Ka of  

the positive energy solutions as annihilator of a particle in mode K, then the coefficients 

Kb? of the negative energy contributions have to be interpreted as creators of anti-
particles of opposite charge, 
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( ) ( )
( )

( )
( )

( )

( ) .
k ,

k, 0 k, 0
, k ki k t i k t

Kk
k k

x a u e b u e−= +∑ ∑ω ω
ω ω κ

ω > ω <
ψ ?                          (2) 

 
Therefore, for each process involving factors of ( )xψ and conserving the number of 
particles, there are process producing pairs of particles and antiparticles, thus changing 
the total number of particles. Canonical quantization, discussed in Set.2.3 below shows, 
that the creators and annihilators indeed satisfy the expected relations, 
 

( )K K,K K, , '',,i i iii ia a b b′ ′′± ±
⎡ ⎤ ⎡ ⎤ ′= =⎣ ⎦ ⎣ ⎦ δ δ† † k - k                                                                (3) 

where i ,i’,  now denote integral degrees of freedom such as spin, and [ ].,.. ± denotes the 
commutator for bosons, and the anti-commutator for fermions, respectively. 
 
All free non-interacting quantum fields are the form Eqs.(2) and (3).Interesting 
dynamics only occurs in the presence of interactions. Their quantum mechanical and 
relativistic description is the subject of the present contribution. 
 
In the following, indices ,vμ etc. from the second half of the Greek alphabet label 
space-time indices, whereas indices ,α β etc. from the first half of the Greek alphabet 
represent gauge degrees of freedom in particular, and Latin indices a,b,etc. are related to 
general internal degrees of freedom or spinor indices.  If not indicated otherwise, 
identical indices (both Latin and Greek) appearing as upper and lower indices are 
summed over.  As usual, space –time indices are lowered and raised with the metric 
tensor vgμ and its inverse 1

,
v

vg gμ
μ
−≡ respectively. We also use natural units, 

1,h c k= = = in which all units are expressed in terms of energy units. 
 
2.  Description of Interactions in Quantum Mechanics and Quantum Field Theory 
 
We know today that all interactions on the fundamental level should be described within 
the framework of quantum mechanics. We therefore start with a short review of basic 
concepts of quantum mechanics. 
 
2.1 The Action Principle 
 
On the fundamental level of a quantum mechanical system can be described within the 
Hamiltonian or Lagrangian formalism. Symmetries are more transparent in the 
Lagrangian formalism, so we will use the latter here. In general the Lagrangian is a 
functional ( ) ( ),L t t⎡ ⎤⎣ ⎦ψ ψ of fields ( )X, tiψ and their time derivates ( )X, tiψ at a given 
time t.Here ,X is a space coordinate, and i is some discrete internal coordinate labeling 
particle type, indicates related to symmetry groups such as Lorentz –indices for non-
trivial representations of the group of rotations and Lorentz-boosts, or indices related to 
internal symmetries such as color or electroweak charge (see further below). To avoid 
cluttering we will sometimes suppress x and i. the canonically conjugated momenta are 
defined as  
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( )
( ) ( )
( )

,
,

,
i

i

L t t
t

t

⎡ ⎤⎣ ⎦≡X
X

δ ψ ψ
π

δψ
                                               (4) 

 
The action is then defined as the time integral of the Lagrangian, 
 

[ ] ( ) ( ), .S dtL t t
+∞

−∞
⎡ ⎤≡ ⎣ ⎦∫ψ ψ ψ                                              (5) 

 
Demanding that the action is external under all infinitesimal variations ( )tδψ which 
vanishes for t →±∞  yields the field equations, or equations of motion, 

( )
( ) ( )
( )

,
t

t

i

i

L t t⎡ ⎤⎣ ⎦=X,
X,

δ ψ ψ
π

δψ
                                                           (6) 

 
2.2 Symmetries of the Action 
 
Lorentz invariance suggests that the action should be the space-time integral of a scalar 
function of the fields ( )ti X,ψ and their space-time derivatives ( ) ,iμ∂ ψ Χ, t and thus the 
Lagrangian should be the space-integral of a scalar called the Lagrangian density L, 
 
[ ] ( ) ( )4 , ,i iS d xL x xμ⎡ ⎤= ∂⎣ ⎦∫ψ ψ ψ                                                             (7) 

 
where  ( )x ≡ tX, from  now on. In this case, the equations of motion Eq.(6)read 

( )
,

ii

L L
μ

μ

∂ ∂
∂ =

∂∂ ∂ ψψ
                                                                          (8) 

 
which are called Euler-Lagrange equations and are obviously Lorenz invariant if L is a 
scalar. 
 
Symmetries can be treated in very transparent way in Lagrangian formalism.  Assume 
that the action is invariant, 0S =δ independent of whether ( )i xψ satisfy the field 
equations or not, under a global symmetry transformation, 
 

( ) ( ) ( ), ,i i j jx i x xμ⎡ ⎤= ∈ ∂⎣ ⎦δψ ψ ψF                                            (9)

  
for which ∈is independent of x. here and in the following explicit factors of i, denote 
the imaginary unit, and not an index.  Then, for a space-time dependent ( )x∈ ,the 
variation must be of the form 
 

( ) ( ) ( )4 , ,S d xJ x x x xμ
μ μ⎡ ⎤= − ∂ ∂ ∈⎣ ⎦∫δ ψ ψj j                              (10) 

 
But if the fields satisfy their equations of motion, 0S =δ , and thus 
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( ) ( ), , 0,j jJ x x xμ

μ μ⎡ ⎤∂ ∂ =⎣ ⎦ψ ψ                                                                (11) 

 
which implies Noethers theorem, the existence of one conserved current J μ for each 
continuous global symmetry.  If Eq. (9) leaves the Lagrangian density itself invariant, 
an explicit formula for J μ follows immediately, 
 

( ) i
i

LJ iμ

μ

∂
= −

∂ ∂ ψ
F                                                                              (12) 

where we drop the field arguments from now on. 
 
An important example is invariance of the action S under space-time translations, for 
which ( )i ii xμ= − ∂ ψF in Eq. (9). In this case, the currents J μ for each μ are given by 
 

( ) ,v v
i

v i
Tμ μ μ

∂
= − ∂

∂ ∂
δ ψ

ψ
LL                                                                                      (13) 

 
which represents the energy momentum tensor. 
 
2.3 Canonical and Path Integral Quantization 
 
So far our discussion applies both to classical as well as quantum fields.  In order to 
make the transition to quantum field theory, two main approaches are used in the 
literature. The first one is known as canonical quantization and elevates the fields 

( )i xψ and ( )i xπ to operators ( )i xΨ and ( )i x∏ acting on a Hilbert space of physical 
states, ad obeying the commutation relations 
 

( ) ( ) ( )X X - y
3, , ,j j

i it y t i⎡ ⎤Ψ =⎣ ⎦∏ δ δ                                                                       (14) 

 
The second approach is path integral quantization and is equivalent to canonical 
quantization. In this approach the expectation value of products of general operators 

( )i xΨ⎡ ⎤⎣ ⎦O between the vacuum state at  t = ±∞ , 0,±∞ , is given by a functional 

integral over c-number fields ( )i xψ (which anti-commute in case of fermions), 
 

( ) ( ){ }0, ... 0,a a a b b bT t t⎡ ⎤ ⎡ ⎤+∞ Ψ Ψ ∞⎣ ⎦ ⎣ ⎦O O           (15)               

            
( ) ( ) ( )

( ) ( )
,

4

...

exp ,

i a a a b b b
x i

j j

d x t t

i d yL y yμ

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤∂⎣ ⎦⎣ ⎦

∏∫

∫

∝ ψ ψ ψ

ψ ψ

O O

, 
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where ( ) ( )a a ia at xΨ ≡ Ψ etc., and T{…} signals time ordering with ....,a bt t> > Here 
we have assumed that L is at most quadratic in the derivates jμ∂ ψ . 
 
In general these path integrals cannot be evaluated exactly. However, one can perform a 
perturbation expansion in the following way: let us split the action into a free part 

[ ]0S ψ quadratic in ( )i xψ , and an interacting part [ ]1S ψ , and write 
 

[ ] ( ) ( )4 4
0 , ' '

, '

1
2 ix i y i i

i i
S d xd y x y= − ∑ψ ∫ ψ ψD  .            (16)  

        
The path integral for this quadratic part can then be reduced to Gaussian integrals for an 
arbitrary number of fields under the expectation value, 
 

( )( ) ( ) ( ) [ ]( )
( )( ) [ ]( )

( )
, ' '

1 1 ,2 2 0,

0,

1
,

pairs
pairings

...exp

exp

field
ix i x

i i ix i

ix i

d x x x S

d x S

i= −

∏∫
∏∫

∑ ∏ −

ψ ψ ψ ψ

ψ ψ

ix i'x'D
                   (17) 

                                                                                       
where 1i −− D is called the propagator.The exponential of the full action can then be 
expanded into powers of [ ]1S ψ , which contain vertices of at least three free fields, and 
the resulting path integrals can be evaluated using Eq.(17). Terms in that expansion that 
do not contain any space-time (or energy momentum in the Fourier transformed 
picture)integrations are said to be on the tree or classical level.  All other terms contain 
such integrations or loops and are due to quantum fluctuations around the classical 
approximation. If one keeps Planck’s constant , the umber of loops contributing to a 
given term in the perturbative expansion of Eq.(15) depends linearly on the power of 

in this term: The action S appears as divided by because it has the units of energy 
times time, thus each factor 1S contributes -1 , whereas according to Eqs (16) and (17) 
each propagator contributes ,but the number of propagators minus the number of 
vertices, at which the space time coordinates of all fields coincide, is linear in the 
number of independent loops. Planck”s constant therefore characterizes the size of 
quantum effects. 
 
2.4. Space-Time Symmetries and Their Representations 
 
The Poincare’ group is the symmetry group of special relativity and consists of all 
transformations leaving invariant the metric  

( ) ( ) ( ) ( )2 2 2 22 0 1 2 3 ,ds dx dx dx dx= − + + +                                                     (18) 
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where 0x is  a time coordinate and 1 2,x x and 3x are Carstesian space coordinates. These 
transformations are the of the form 
 

v
v x aμ μ μ= Λ +x'                                                                                                   (19) 

 
where aμ defined arbitrary space-time translations, and the constant matrix v

μΛ satisfies 
 

v
v p p

μ
μ σ ση ηΛ Λ =                                                                                                    (20) 

where ( )diag 1,1,1,1 .vμη = − The unitary transformations on fields and physical states 
ψ induced by Eq.(19) satisfy the composition rule 
 
( ) ( ) ( )2 2 1 1 2 1 2 1 2, .U a U a U a aΛ Λ = Λ Λ Λ +                                                         (21) 

 
Important subgroups are defined by all elements with 1Λ = (the commutative group of 
translations) and by all elements with 0aμ = [the homogenous Lorentz group 

( )3,1SO of matrices v
μΛ satisfying Eq.(20).]. the latter contains the subgroup ( )3SO of 

all rotations for which 0 0
0 01, 0μ

μΛ = Λ = Λ = for 1,2,3.μ =  
 
The general infinitesimal transformations of this type are characterized by an 
antisymmetric tensor v

μω and a vector μ∈ . 
 

v v v aμ μ μ μ μΛ = + =∈δ ω                                              (22) 
   
any element ( )1 ,U + ∈ω of the Poincare group which is infinitesimally close to the unit 

operator can then be expanded into the corresponding Hermitian generators vJ μ and 
Pμ , 
 

( ) 11 , 1
2

v
vU i J i Pμ μ

μ μ+ ∈ = + − ∈ω ω                                                      (23) 

 
It can be shown that these generators satisfy the commutation relations 
 

,v p v p v pv v pi J J J J J Jμ σ μσ μ σ σμ σ μη η η η⎡ ⎤ = − − +⎣ ⎦  
 

, p p pi P J P Pμ σ μ σ μση η⎡ ⎤ = −⎣ ⎦   
 

, 0.vP Pμ⎡ ⎤ =⎣ ⎦                                                                                            (24) 
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The Pμ represent the energy-momentum vector, and since the Hamiltonian 
0H P≡ commutes with the spatial pseudo-three-vector ( )31 12 ,J J≡ 23J J the latter 

represents the angular –momentum which generates the group of rotations ( )3SO . 
 
Fields and physical states can thus be characterized by their energy-momentum and 
spin, which characterize their transformations properties under the group of translations 
and under the rotation group, respectively.  Let us first focus on fields and stats with 
non-vanishing mass.  In this case one can perform a Lorentz boost into the rest frame 
where ( ),0,0,0P Mμ = with M the mass of the state . Pμ is then invariant under the 

rotation group  ( )3SO . The irreducible unitary representations of this group are 
characterized by a integeror half –integer valued spin j such that the 2j+1states are 
characterized by the eigenvlaues of iJ  which run over , 1,..., 1, .j j j j− − + + note that an 

eigenstate with eigenvalue σ of iJ is multiplied by a phase factor 2 ie σπ under a rotation 
around the i-axis by 2π , and a half –integer spin state thus changes sign. Given the fact 
that a rotation by 2π is the identity this may at first seem surprising.  Note, however that 
normalize states in quantum mechanics are only defined up to phase factors and thus a 
general unitary projective representation of a symmetry group on the Hilbert space of 
states can in  general include phase factors in the composition rules such as Eq.(21).This 
is indeed the case for the rotation group ( )3SO which is isomorphic to 3 2/S Z the three-
dimensional sphere in Euclidean four-dimensional space with opposite points identified, 
and thus doubly connected. This means that closed curves winding n times over a closed 
path are continuously contractible to a point of n is even, but are not otherwise. Half 
integer spins then correspond to representations for which  

( ) ( ) ( ) ( )1 2 1 2
nU U UΛ Λ = − Λ Λ ,where n is the winding number along the path from 1to 

1Λ , to 1 2,Λ Λ and back to 1, whereas integer spins do not produce a phase factor. 
 
With respect to homogenous Lorentz transformations, there are then two groups of 
representations. the first one is formed by the tensor representations which transform 
just as products of vectors, 
 

... ...
... ...... p

v p vW Wμ μ σ
σ= Λ Λ′                                 (25)                             

  
These represent bosonic degrees of freedom with maximal integer spin j given by the 
number of indices.  The simplest case is complex spin-zero scalar φ of mass m whose 
standard free Lagrangian 
 

( )21
2

L mμ
φ μφ φ φ φ= − ∂ ∂ −? ?                                                              (26) 

 
leads to an equation of motion Eq.(8) known as Klein –Gordon equation., 
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( )2 0.mμ
μ φ∂ ∂ − =                                                                               (27) 

 
Its free solutions are of the general form Eq.(2) . By comparing Eqs.(16) and (26) one 
finds that the propagator of a scalar of mass m is ( )2 2/i p m− − in four momentum 

space. In the static case 0 0p = this leads to an interaction potential. 
 

( ) 1 2

mreV r g g
r

−
=                                                                                    (28) 

between two “charges”  1,g and 2g at which the propagator ends at which correspond to 
the vertices from the pertubation part 1S of the action.  The potential for the exchange of 
bosons of non-zero spin involve some additional factors for the tensor structure.  Note 
that the range of the potential is given by 1m− .Constraints on a potential fifth force 
beyond the known four fundamental interactions are usually expressed in terms of g and 
m. 
 
The second type of representation of the homogeneous Lorentz group can be 
constructed from any set of Dirac matrices μΓ satisfying the anti-commutation 
relations. 
 

{ }, 2v vμ μη=Γ Γ                                                                                                    (29) 

 
also known as Clifford algebra.  One can then show that the matrices  
 

,
4

v viJ μ μ⎡ ⎤≡ − ⎣ ⎦Γ Γ                                                                                              (30) 

 
indeed obey the commutation relations in Eq.(24) . The objects on which these matrices 
act are called Dirac spinors and have spin 1

2 . In 3+1 dimensions, the smallest 

representation has four complex components, and thus μΓ are 4 4× matrices.  The 
standard free Lagrangian for a spin - 1

2 Dirac spinor ψ of mass m, 

 

( )mμ
μ= ∂ +ψ ψ Γ ψL ,                                                             (31) 

 
where  ψ 0i≡ Γψ ? , leads to an equation of motion Eq.(8) known as Dirac equation , 
 

( ) 0mμ
μ∂ + =Γ ψ                                                                                 (32) 

 
Its free solutions are again of the form Eq.(2) and represent fermionic degrees of 
freedom. 
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It is easy to see the matrix 
 

0 1 2 3
5 i≡ −Γ Γ Γ Γ Γ                                                                                       (33) 

 
is a pseudo –scalar because the spatial iΓ    change sign under parity transformation, and 
satisfies     
 

{ }2
5 5 51 , 0 , 0.vJμ μ⎡ ⎤= = =⎣ ⎦Γ Γ Γ Γ                                                       (34) 

A four –component Dirac spinor ψ can then be split into two inequivalent Weyl 
representations ψL and ψR  which are called left-chiral and right –chiral, 
 

5 51
2 2
+

= + ≡
Γ Γ−

ψ ψ ψ ψ ψ.
1
+L R                                                    (35) 

 
Note that according to Eqs. (34) and (35) the mass term in the Lagrangian Eq. (31) flips 
chirality, whereas the kinetic term conserves chirality. 
 
The general irreducible representations of the homogenous Lorentz group are then given 
by arbitrary direct products of spinors and tensors.  We note that massless from 
representations of the group ( )2SO leaving invariant Pμ ,instead of of  ( )3SO . The 

group ( )2SO has only one generator which can be identified with helicity , the 
projection of spin onto three-momentum. For fermions this is the chirality defined by 

5Γ above. 
 
Most of what was discussed in this section carries over directly to an arbitrary number 
D of space-time dimensions, where the homogeneous Lorentz group is ( )1, 1SO D − . 

The spatial rotation group for massive and massless particles are ( )1SO D − and 

( )2SO D − , with D-1 and D-2 components for each  vector representation, respectively. 

As can be seen by pairing dimensions, a D-dimensional Dirac spinor has [ ]/ 22 D complex 
components where [ ]... denotes the integer part.  If D is even, the chirality 

[ ]/ 2 1 0 1 1...D Di− + −≡Γ Γ Γ Γ , corresponding to 5Γ for D=4, allows again to split Dirac 
spinors ψ into two Weyl spinors ψL and ψR . If D=2 or D=10 one can simultaneously 
define real (Majorana) spinors.  These two cases play an important role in string theory. 
 
 
- 
- 
- 
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