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Summary 
 
A brief introduction to the physics of low-dimensional quantum systems is given. The 
material should be accessible to advanced physics undergraduate students. References 
to recent review articles and books are provided when possible.  
 
1. Introduction 
 
A low-dimensional system is one where the motion of microscopic degrees-of-freedom, 
such as electrons, phonons, or photons, is restricted from exploring the full three 
dimensions of our world. There has been tremendous interest in low-dimensional 
quantum systems during the past twenty years, fueled by a constant stream of striking 
discoveries and also by the potential for, and realization of, new state-of-the-art 
electronic device architectures.  
 
The paradigm and workhorse of low-dimensional systems is the nanometer-scale 
semiconductor structure, or semiconductor “nanostructure,” which consists of a 
compositionally varying semiconductor alloy engineered at the atomic scale. 
Traditionally one would not include naturally occurring low-dimensional entities such 
as atoms and molecules in the subject of this chapter, but some of the most exciting 
recent developments in the field have involved the use of molecules and even 
biologically important materials and has blurred the boundaries between the subject and 
other physical and life sciences. In addition, there are systems of great interest in 
physics, such as high-temperature superconductors, where the effects of reduced 
dimensionality are believed to be essential, and these too will be regarded as low 
dimensional. Many of the subjects covered here are central to the currently fashionable 
fields of nanoscience and nanotechnology.  
 
The study of low-dimensional quantum phenomena has led to entirely new fields of 
research, such as the physics of mesoscopic systems, which will be discussed below. 
And low-dimensional systems have shed new light on the difficult questions of how 
disorder (impurities, for example) and electron-electron interaction affect a quantum 
system. In fact, understanding the combined effects of disorder and interactions in 
condensed matter systems is currently a problem of enormous interest.  
 
How are electrons, say, restricted from moving in three dimensions? The answer is 
confinement. Take, for example, an electron inside a long wire: The positively charged 
ions in the wire produce an electric field that prevents the electrons from escaping. 
Often, in fact, one can regard the electrons as being subjected to a hard-wall potential at 
the wire’s surface. The electronic eigenstates are given by a plane wave running along 
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the wire multiplied by a localized function in the transverse directions. For a range of 
low energies the eigenstates have the same transverse eigenfunction and only the plane 
wave factor changes. This means that motion in those transverse directions is “frozen 
out,” leaving only motion along the wire.  
 
This chapter will provide a very brief introduction to the physics of low-dimensional 
quantum systems. The material should be accessible to advanced physics undergraduate 
students. References to recent review articles and books are provided when possible. 
The fabrication of low-dimensional structures is introduced in Section 2. In Section 3 
some general features of quantum phenomena in low dimensions are discussed. The 
remainder of the chapter is devoted to particular low-dimensional quantum systems, 
organized by their “dimension.”  
 
2. Making Low-Dimensional Quantum Structures 
 
The most common method of fabricating low-dimensional structures is by “growing” 
compositionally graded semiconductor alloys in high-vacuum molecular-beam epitaxy 
(MBE) machines. Take, for example, the homogeneous alloy 1 AsGaAlc c−  consisting of 
a periodic array of arsenic atoms together with a fraction c  of aluminum and 1 c−  of 
gallium. The special cases of 0c =  and 1c =  correspond to the crystalline 
semiconductors GaAs  and AlAs , each with a distinct band structure. The microscopic 
potential produced by the alloy 1 AsGaAlc c− , although not strictly periodic, may be 
regarded as producing a band structure interpolating between that of GaAs  and AlAs . 
In particular, the energy gap between the valence and conduction bands varies with c .  
 
Structures that confine electrons are made by changing the aluminum fraction c  during 
crystal growth, leading to a compositionally graded alloy of the form ( ) 1 ( )AsGaAlc c−r r , 
where c  varies spatially. The resulting band structure variation produces a spatially 
varying conduction band minimum. Hence, an electron added to the conduction band 
through doping, optical excitation, or electrical injection, sees a position-dependent 
potential. By varying c  appropriately, one can engineer confining potentials that restrict 
electron motion to fewer than three dimensions.  
 
In practice, however, it is possible to vary c  in one direction only, resulting in, at best, a 
two-dimensional system. To complete the construction of a semiconductor 
nanostructure it is often necessary to follow growth with lithography, the selective 
etching of prepared surfaces. After coating a surface with a protective material, the 
“resist,” patterns are imprinted on the resist in a photographic process with focused 
light, electron beams, or even atoms. After the imprinted pattern is removed chemically, 
the underlying semiconductor is etched away, leaving an environment that confines 
electrons both in the MBE-growth direction and laterally (perpendicular to the growth 
direction). Another common way to produce lateral confinement is to use lithographic 
techniques to pattern metallic electrodes, or “gates,” on the surface of a crystal (grown 
by MBE, for example) that has electrons confined in a buried two-dimensional layer 
parallel to that surface. By applying voltages to these electrodes, electrons in the layer 
can be depleted from or attracted to the regions below the electrodes.  
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Finally, it is in many cases necessary to attach electrical contacts to the electron gases 
inside these nanostructures and to the metal gates on their surfaces.  
 
The lower limit to the size of the structures one can make is usually determined by the 
size of the patterns one can make with lithography, which, in turn, is usually determined 
by the quality of the image formed during the exposure stage. At the time of this writing 
the semiconductor industry can produce, in an integrated circuit, wires with a thickness 
of only 10 nm, more than 10 times smaller than the wavelength of visible light.  
 
To make even smaller structures naturally occurring nanometer-scale systems have 
used. Examples include self-assembled nanostructures and structures incorporating 
molecules or biological materials. A self-assembly technique to make arrays of few-
nanometer quantum dots (small “artificial atoms” where electrons are confined in all 
three dimensions) by growing a thin layer of highly strained material on top of another 
crystal has been particularly successful. The strained layer relaxes by breaking into 
small islands, which form the quantum dots. An excellent example of the use of 
molecules to make low-dimensional systems is provided by large carbon sheets that can 
be rolled into stable hollow spheres, known as Bucky balls, or into carbon nanotubes. It 
is even possible to put other molecules inside a Bucky ball, to arrange Bucky balls into 
a molecular crystal, and to electrically contact individual nanotubes. Electrical contacts 
have also been attached to other molecules, turning them into “transistors.” Polymers 
and even DNA strands have been used to engineer quantum structures at the nanometer 
scale.  
 
3. Physics in Quantum Systems of Reduced Dimensions 
 
Physics in low-dimensional systems is often different than that in three dimensions. We 
now discuss some of these differences and the theoretical tools used to understand them.  
 
 
 
3.1. Effective Mass Theory 
 
Electrons in semiconductor nanostructures move in the presence of as many as three 
fields; the periodic or nearly periodic potentials produced by the atoms in the crystal, 
fields applied externally, and the electron-electron interaction potential. The atomic 
potentials, which vary at the few Angstrom scale, are usually varying much more 
rapidly than the others. In this case, assuming the electronic states have energies near 
the bottom of the conduction band or near the top of the valence band, there is an 
extremely useful description whereby the original problem of an electron moving in the 
presence of the atomic as well as other potentials is replaced by the much simpler 
problem of an electron, now with a different mass, moving in the presence of the slowly 
varying fields only. For example, the effective mass of an electron in a GaAs 
conduction band is about 0 067.  times the ordinary bare mass. In general, the effective 
mass depends on the electron’s propagation direction, and can even vary with position.  
 
3.2. Density of States 
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An important distinction between systems with different dimensionality is their density 
of states ( )N ε , which is the number of states per unit “volume” DL  in an energy range 
ε  to dε ε+ , divided by dε . L  is the linear size of the system, and D  can be either 1, 
2, or 3. (The zero-dimensional case has to be treated separately). A simple general 
formula can be derived to determine the energy dependence of ( )N ε : Given an 

excitation (electron, phonon, photon) with dispersion relation ( )k k αε ∝ | | , the number 
of states contained within a D -dimensional sphere of radius k  in momentum space is 
proportional to ( 2 )D DL kπ/  and the number per unit volume is therefore proportional to 

Dk  or D αε / . The density of states is evidently the derivative of the latter with respect to 

energy, so 1D
N αε −∝ . Phonons and photons ( 1)α =  in three dimensions have 2N ε∝ , 

and in lower dimensions would have 1DN ε −∝  as long as the dispersion remains linear. 

Electrons ( 2)α =  have a density of states proportional to 
1
2ε , 0ε  (i.e., energy 

independent), and 
1
2ε −  in 3, 2, and 1 dimensions, respectively. The expressions for 

2D =  and 1D =  assume only one transverse mode or sub-band present. When more 
are present, these additional branches simply add to ( )N ε .  
 
3.3. Mesoscopic Physics 
 
Mesoscopic physics is an exciting new field of science made possible by nanostructures. 
A mesoscopic system is one that is in some sense between a microscopic and 
macroscopic system. It is typically much larger than a few atoms or molecules, yet it is 
small enough that the degrees-of-freedom (usually electrons) have to be regarded as 
fully quantum-mechanical. More precisely, a mesoscopic system has a size L  that is 
larger than a microscopic length scale a  (for example the Bohr radius), yet smaller than 
the phase-coherence length Lϕ , which is the characteristic length beyond which a 

particle loses phase coherence. Lϕ  generally depends on the dimension and the 
temperature of the system, as well as on microscopic details. Thus, in simple terms, a 
mesoscopic system is one that is larger than microscopic and in which quantum 
mechanics manifests itself fully. In what follows we shall discuss a few examples and 
concepts from mesoscopic physics.  
 
3.3.1. Aharonov-Bohm Effect 
 
In 1959 Yakir Aharonov and David Bohm predicted that a magnetic field can influence 
the quantum-mechanical phase of charged particles, even if the particles are prevented 
from entering the region containing the magnetic field. This proposal, although a direct 
consequence of quantum mechanics, violated everyone’s intuition and was extremely 
controversial at the time. The Aharonov-Bohm effect has been observed hundreds of 
times and shows up everywhere in the study of mesoscopic systems. Excellent accounts 
of it are given in quantum mechanics textbooks.  
 
The basic idea is that a charged particle moving around a closed loop of circumference 
L  accumulates, along with its kinematical phase 2 Lπ λ/ , where λ  is the deBroglie 
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wavelength of the particle, an additional Aharonov-Bohm phase given by 02 Φ Φπ / , 
where Φ  is the magnetic flux enclosed by the ring and Φ hc e0 ≡ /  is the quantum of 
magnetic flux. The Aharonov-Bohm phase changes the energies of charged particles 
and also can shift quantum interference patterns. But the effect can only be observed if 
the particles are sufficiently phase coherent.  
 
3.3.2. Persistent Currents 
 
A simple example of a mesoscopic effect is as follows: Take a small metal or 
semiconductor ring of circumference L . The mesoscopic ring can be made using the 
lithographic techniques described above. The ring is an ordinary conductor, not a 
superconductor. It seems reasonable and is usually the case that in the absence of a 
magnetic field the ground state of the ring is non-current-carrying. However, if the 
phase-coherence length Lϕ  is larger than L  then by threading the ring with a magnetic 
flux Φ  the ground state (or finite-temperature equilibrium state) becomes a current-
carrying state, and current will flow around the ring without ever dissipating, even in the 
presence of disorder. The electrons in the ring are affected by the magnetic field even 
though they are never in contact with it, a consequence of the Aharonov-Bohm effect.  
 
Nondissipative current-carrying states can occur in a superconducting ring too, but in 
the superconducting case the current-carrying state is not, strictly speaking, an 
equilibrium state, but is instead an extremely long-lived metastable nonequilibrium 
state.  
 
As the ring becomes larger, the magnitude of the persistent current decreases. One 
reason is that when L  exceeds Lϕ  the electrons no longer are moving coherently 
around the ring and the Aharonov-Bohm effect is no longer operative. The second 
reason is that even if is Lϕ  was always larger than L , the magnitude of the maximum 
persistent current decreases as 1 L/ .  
 
3.3.3. Phase-Coherent Transport 
 
Electrons in a mesoscopic conductor (a conductor whose dimensions are smaller than 
Lϕ ) move as a wave, not as a particle. The behavior is similar, in fact, to an 
electromagnetic wave propagating inside a wave guide. This wave-like nature leads to 
many unusual physical properties.  
 
Perhaps the most profound is the origin of resistance in mesoscopic conductors. 
Ordinarily resistance is caused by inelastic collisions of the current-carrying electrons 
with disorder (impurities and other imperfections), other electrons, and with lattice 
vibrations (phonons). In a mesoscopic conductor, however, an electron typically travels 
the entire length of the system without undergoing an inelastic collision. Thus it might 
seem that there would be no resistance at all. But to measure the resistance in a 
mesoscopic system one has to attach electrical contacts or leads to it, which are 
macroscopic. What occurs, then, in a mesoscopic conductor, is that the resistance is 
caused by a combination of elastic scattering of electron waves from disorder and 
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inelastic scattering in the macroscopic leads, although the magnitude of the resistance is 
determined exclusively by the former.  
 
These phenomena are succinctly described by a formula, originally proposed by Rolf 
Landauer in 1957, for the conductance G  (reciprocal of the resistance) of a mesoscopic 
system. Landauer’s formula is simply 2 2G t e h=| | / , where t  is the quantum 

transmission amplitude for an electron to propagate through the system ( 2t| |  is the 

transmission probability). The ratio 2e h/  of fundamental constants has dimensions of 
conductance and is about 1 26kΩ/ . The Landauer formula shows that the conductance 
of a mesoscopic conductor is directly related to the quantum mechanical probability that 
an electron can propagate through the system without scattering elastically. It makes no 
reference to the strength of inelastic scattering that actually causes the energy 
dissipation normally associated with a resistor.  
 
Another important consequence of the phase-coherent nature of electron transport in a 
mesoscopic system is a phenomenon called weak localization. To understand weak 
localization it is first necessary to understand “ordinary” Anderson localization 
(sometimes called strong localization), named after Phillip Anderson. Anderson 
localization is the process whereby the eigenstates of an electron gas in a disordered 
environment become spatially localized around impurities, causing the system to behave 
as an insulator instead of a conductor. Weak localization is a very different process that 
also increases the resistance of a disordered conductor (although it is not strong enough 
to turn a conductor into an insulator).  
 
It comes from a very special quantum interference effect that occurs in systems with 
time-reversal symmetry: To find the probability P  for an electron to propagate from 
point r  to point ′r , one has to add the quantum amplitudes iA  for the electron to take 

all possible paths i , and then calculate the modulus squared, 2
iiP A=| | .∑  (This 

expression is a consequence of Feynman’s path integral formulation of quantum 
mechanics, but one can also view it as a generalization of the double-slit interference 
formula to an infinite number of “slits.”) The cross-terms in this expression are 
responsible for interference.  
 
Usually when open paths with r  different from ′r  are considered, the randomness in 
the iA  wash out any quantum interference effects. However, there is a special class of 
paths, closed paths with ′r = r , where interference effects can be important. In systems 
with time-reversal symmetry (which basically means that there can be no applied 
magnetic field) there will always be pairs of closed paths and their time-reversed 
counterparts in the above summation that have the same amplitude. The result is that the 
probability to go from r  to r , in other words the probability to go nowhere is enhanced 
by quantum interference effects, and this amounts to a measurable increase in 
resistance.  
 
3.3.4. Dephasing by Electron-Electron Interaction 
 
As explained above, weak localization (and more generally, the Aharonov-Bohm effect) 
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occurs when the electron motion is sufficiently phase-coherent. This fact can be 
exploited to actually measure the phase-coherence length Lϕ  or phase-coherence time 

ϕτ , the characteristic time beyond which the electron becomes decoherent, in an 

electron system. Lϕ  and ϕτ  are simply related to each other and only one needs to be 
measured. The resistance increase due to weak localization depends on the number of 
closed paths that contribute to the summation in 2

iiP A=| |∑ , and a given closed path 

contributes as long as its length L  is less than Lϕ  (if L Lϕ>  the electron would not 
have the phase coherence necessary to exhibit interference). Thus, the magnitude of the 
weak localization effect—which can be determined by “turning the effect off” by 
applying a magnetic filed—can be used to infer the value of Lϕ  or ϕτ .  
 
At low temperatures the dominant mechanism for dephasing is electron-electron 
scattering: A given electron feels a fluctuating electric field produced by the other 
electrons that scrambles its phase after some time ϕτ . Theoretically it is predicted that 

the dephasing rate vanishes at low temperature as 1 T β
ϕτ
− ∝ , where β  is a positive 

exponent, but recently Richard Webb and others have given experimental evidence for a 
saturation of 1

ϕτ
−  in the 0T →  limit. The physics of low-temperature dephasing is 

currently a problem of great controversy and interest.  
 
3.3.5. Thouless Energy 
 
Mesoscopic physics research has also led to a profound new discovery about quantum 
systems in general. In the 1970’s David Thouless and collaborators showed that any 
quantum system possesses an important fundamental energy scale, now called the 
Thouless energy TE . The Thouless energy is a measure of how sensitive the eigenstates 
in a quantum system are to a change in boundary conditions. Specifically, TE  is defined 
as the energy change of a state at the Fermi energy caused by a change from periodic to 
antiperiodic boundary conditions. TE  would be zero in a system—for example an 
insulator—with localized eigenstates, because if the wave functions do not extend to the 
boundaries their energies will be independent of boundary conditions. Thouless showed 
that the dimensionless ratio Tg E ε≡ /Δ  of TE  with the energy level spacing at the 
Fermi energy, Δ∈ , determines whether the system is a conductor ( 1)g >  or an 

insulator ( 1)g < . In fact, g  is equal to the conductance of the system in units of 2e h/ .  
 
 
- 
- 
- 
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