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Summary 
 
Nature is nonlinear; this is the cause of a great variety of phenomena happening in our 
own life, from both the physiological and the physical point of view. Dynamical 
systems serve to describe the evolution in time of life and its existence in our universe. 
The importance of this kind of systems motivates us to go far beyond of their simple 
formulation and permits us to establish new mathematical tools for the study and 
analysis of their properties. This review chapter presents an overview of nonlinear 
dynamics and chaos concepts useful for the analysis of turbulence phenomena.  
 
1. Introduction 
 
The question about what is chaos can be established according to the specialized 
literature in the area in a threefold way: viewing the phenomenon, taking the word 
chaos literally and studying the science of chaos. In 1831 Faraday observed superficial 
water waves in a container vibrating vertically with the frequency ω  and discovered the 
appearance of subharmonic components of frequency 2ω/ .  
 
This experiment -the phenomenon- has been repeated again and again to through some 
light on the new understanding of chaos. Lord Rayleigh repeated and discussed the 
experiment from the parametric resonance point of view in his treatise, The Theory of 
Sound.  
 
The most important thing to be taken into account for this experiment is the existence of 
subharmonics. In physics many experimental devices are used as frequency 
transformers to distinguish the nature of several phenomena; this means that a system 
can be considered as linear if the frequency components of both the input and the output 
signals coincide, and nonlinear otherwise. In nonlinear systems, higher harmonics as 
well as sums and differences of the input frequencies appear naturally, but it is not 
trivial to generate subharmonics. The subharmonic modes present very small 
amplitudes, no matter how weak the nonlinearity could be. The subharmonic observed 
by Faraday and Rayleigh was a kind of threshold phenomenon: it appeared suddenly 
when the nonlinearity reached a certain value. The discovery of both, the threshold and 
the subharmonic required some nontrivial explanation. In 1981, the Faraday’s 
experiment was repeated using novel and modern data acquisition and analyzing 
systems. In the ‘new’ experiment not only the second subharmonic, was found, but also 
a sequence of subharmonics each one with its own threshold were found out. This 
sequence turned into a noise-like output with a continuous frequency spectrum, which is 
termed today as chaos (CHs). 150 years after Faraday’s experiment, researchers 
returned to study his experiment, with the intention to give some explanation of chaotic 
phenomena through the use of nonlinear dynamical systems (DS). In fact, in many 
nonlinear systems, chaotic states of motion may be attained via a finite or infinite series 
of numbers of sharp transitions while the final chaotic states are characterized by a 
number of quantities that distinguish them from the pure random state. The process of 
calculating these metric properties has been called characterization of CHs, a subject 
that will be studied in the next sections.  
 
On the other hand, it is known that nature is essentially nonlinear and the idea that 
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natural processes have regular behavior is a consequence of linear paradigms. The 
excessive use of linear analysis had limited the comprehension of natural processes for 
many years. One of these paradigms is the strict determinism which has delayed the 
recognition of chaotic phenomena, since from the deterministic point of view, it can be 
known at every time and every position all what is concerned with respect to positions, 
motions and general effects of all the entities that conform a body, as Laplace 
established in the XVIII century. Nevertheless, in 1892, Poincaré studied the dynamical 
response of the three-body problem. The analysis performed by Poincaré included 
another point of view that contrasted to the Laplacian determinism. Although Poincaré 
had an absolutely clear vision with respect to CHs as it is understood nowadays, it was 
only in 1963, when Lorenz developed studies about meteorology; that the idea of CHs 
was related to DS and was reconsidered again, through the use of modern computers 
with graph packages and simple algorithms. Lorenz studied the classical problem of 
Rayleigh-Bénard for fluid convection, which contains two parallel plates, separated by a 
fluid, where both plates were subjected to some temperature gradient. Lorenz’s analysis 
shows that small variations on initial conditions may cause great changes in the 
system’s response; a recognition of this fact caused the start of the modern study of 
CHs. This phenomenon, representing sensitive dependence on initial conditions, is a 
characteristic feature of CHs. Colloquially, this effect became famous as the butterfly 
effect, which means that if a butterfly flaps its wings in Japan, then it may cause a 
hurricane in México.  
 
The word chaos appeared as a scientific term with L. Boltzmann, who assumed 
molecular CHs in his derivation of the famous H-theorem more than 100 years ago. N. 
Wiener used the word CHs in the titles of several papers. Both scientists, however, used 
it to denote disorder caused by or closely related to stochastic processes. The modern 
usage of the word chaos meaning intrinsic stochastic behavior in deterministic systems 
appeared for the first time in the Li and Yorke’s paper entitled “Period Three implies 
chaos”. Together with these pioneering studies, many relevant contributions may be 
found in the study respect CHs. Just as a tribute to some important authors, one might 
mention: Feigenbaum, Smale, Shaw, Duffin, Van der Pol, Yorke, Ott, Guckenheimer, 
Holmes, Grebogi, Moon, Abarbanel, Thompson, Chua, Cvitanovic, Pomeau, Parisi, 
Brézin, Percival, Ruelle, Mandell, Prigogine, etc.  
 
About the same time, Mandelbrot studying DS, established the existence of the fractal 
geometry of nature in contrast to classical differential geometry, which provides just a 
first approximation to the structures of physical objects. Fractals have been observed in 
nature in different situations varying from geometry to physical sciences. Basically, it is 
possible to categorize fractals into two different groups: solid objects and strange 
attractors. The first type includes physical objects which exist in ordinary physical 
space. On the other hand, the second type considers conceptual objects embedded in the 
state space (see Section 2.1) of chaotic DS. At the present time, there is still no 
generally accepted definition for chaos.  
 
Indeed there have been some rigorous mathematical definitions for complex behavior in 
DS; however, it is usually very difficult to fit a realistic system or model into some 
mathematical framework. Therefore, one tends to use a working operational definition 
for CHs. If ostensibly random motion occurs in a system, without applying any external 
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stochastic force, and the individual output depends on the initial conditions sensitively, 
but, at the same time, some global characteristics (e.g. a positive Lyapunov exponent or 
Kolmogorov entropy, fractal attractor dimension, etc.) turn out to be quite independent 
of the initial conditions, then chaotic behavior appears. It can be characterized through a 
time series tool that will be considered in Section (4). Nowadays, the use of symbolic 
dynamics (see Section 2.5) provides us a rigorous way to define CHs. In order to 
capture the essence of a physical phenomenon, one has to set aside all the secondary 
factors and to construct simple, nontrivial, mathematical models that in the first instance 
can possibly describe them. Since few models for DS can be solved rigorously, it is 
often necessary to resort to some approximations; fortunately nowadays, the barrier 
between analytically solvable and unsolvable models has been diminishing since the 
introduction of high-speed digital computers. In the 1990s, the analysis of chaotic 
behavior became quite common but not yet the rule in many different fields of science 
as physics, chemistry, engineering, medicine, ecology, biology, and economy.  
 
2. The Universality 
 
Successes in the theory of phase transitions and critical phenomena have provided a 
new meaning in regards to universality. Many natural phenomena and mathematical 
models are grouped into certain universality classes characterized by a similar behavior 
in their dependence; especially, when their parameters are close to some critical value 
where abrupt change takes place. As a rule, a large number of degrees of freedom are 
required to describe the evolution of a complex physical system. The sudden change of 
the system at a certain transition point, may be characterized, however, only by a few 
variables. Generally speaking, it is the sharp nature in the transitions rather than smooth 
evolution of the process that reveals the universal nature of DS. However, some models 
are studied as representatives of relevant universality classes (see Section 2.2, and 2.3). 
Historically, there have been a lot of models which notably stimulated the development 
of science. Some of them have served as archetypes for the development of many 
important theories. In the very first place, one can remember the two-body problem, 
starting from the classical Keplerian problem of celestial motion, concerning the 
explanation of Mercurian perihelion precession in relativistic theory and of the 
hydrogen atom spectra in quantum mechanics, culminating in the impact of the 
understanding of the Lamb shift on the development of non-relativistic and relativistic 
quantum field theory. The Brownian motion is the second example, which has been the 
seed to construct the whole stochastic approach in the physical sciences: from Langevin 
to Fokker-Planck equation, path integral representation of Wiener to the Onsager-
Machlup functional. In studying chaotic behavior in nonlinear systems, there exists 
some other of such archetypes, namely, the one dimensional mapping of the interval 
which will be considered in Section (2.2). Universality concepts and some generalities 
will be treated in the following sections.  
 
2.1. The Dynamical Systems 
 
A DS may be mathematically expressed either by a set of first-order differential 
equations, or by a system, called a map, as follows: 
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1 ( ) 1 ni
i

dxx f x t i n x R
dt

= = , , = ,... ∈ .  (1) 

 
1 ( ) n

i iX F X X R+ = , ∈ .  (2) 
 
The system is called autonomous if ( )i if f x= , i.e. the functions do not change with 
time. Systems of higher-order differential equations can be reduced to first-order 
systems by a suitable change of variables. This type of formulation is general to 
Hamilton representations of conservative energetic systems. The complex patterns 
which appear in nature are vastly studied in different fields of sciences. Spatial aspects 
of DS are included considering coordinates in partial differential equations as 
mathematical models. On this basis, a DS may be understood as a transformation f  that 
is imposed to a vector field x . A DS is generally defined on a configuration space 
consisting of a topological manifold, called state space or phase space. In brief, topology 
is the study of those properties that are unaltered by homeomorphisms, one-to-one 
continuous transformations whose inverses are also continuous and provides the tools to 
understand global aspects related to DS . A manifold is locally like a Euclidean 
space nℜ , but may have varied global structures, as exemplified by the cylinder, the 
torus, the Klein bottle and other higher-dimensional spaces. Integration of (1) to 

( ) ( (0) ) 1i ix t I x t i n= , , = ,... , yields integral curves or trajectories forming a flow on the 
manifold. The sets of these flow curves are called orbits. The flow thus integrates the 
field of velocity vectors determined by Eq. (1). Linear differential equations admit 
analytic solutions and have well-defined asymptotic behavior as t →∞ , converging to 
fixed points, or periodic oscillations, forming closed orbits. An equilibrium point (or 
fixed point) is a special point of the state space where the system may stay stationary, 
which means that the solution does not vary with time. Therefore, if nx R∈  is an 
equilibrium point of the system, then ( ) 0f x = . In the same way, for a map, nX R∈  is 
an equilibrium point if ( )X F X= .  
 
In contrast, even the simplest deviations from linearity, including quadratic, bilinear and 
piecewise-linear functions can, under suitable conditions, result in a more complex 
chaotic behavior, in which the orbits of the system are attracted to a complex higher-
dimensional subset called a strange attractor, or to be ergodic. Ergodic flows behave 
like thermodynamic systems in the sense that they can be modeled over statistical 
ensembles because the orbits fill a set of invariant measure. An attractor is a subset of 
the manifold to which an open subset of points, the basin of the attractor, tends towards 
a limit set with increasing time. Existence of an attractor requires a local volume to be 
contracted with increasing time and is consistent with a dissipative system (see Section 
5.4), in the position-momentum representation. The highlight of a chaotic flow is a 
sensitive dependence on the initial conditions. Points which are arbitrarily close 
initially, become exponentially further apart with increasing time, leading to the 
amplification of very small perturbations into global uncertainties. Sensitivity results in 
both, an entropy increase associated with the loss of positional information with time, 
and in structural unsteadiness in which an arbitrarily small perturbation of the flow 
causes structural changes to the topology of the orbits although they may have similar 
qualitative behavior. The entropy results in a loss of memory of the initial conditions in 
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any numerical approximation over time. Time dependent systems are capable of abrupt 
changes in their topological form called bifurcations (see Section 3.4), as the underlying 
parameters cross critical values. Bifurcations results in abrupt disastrous changes in the 
topology of the flow under continuous variation of the time dependent parameters. 
Because nonlinear differential equations cannot in general be integrated directly, it is 
often necessary to resort to techniques of numerical integration in which a discrete 
transfer function is constructed, which approximates a stroboscopic representation of 
the flow, at discrete time intervals 
 

( ) ( (0)) 1 2 3kx k t G x kΔ = , = , , , ...,  (3) 
 
by using numerical methods such as the improved Euler method or Runge-Kutta. Hence 
the following expansion can be obtained:  
 

[ ]( ) ( ( )) ( ) ( ( )) ( ( ) ( ( )) .
2i i i i i i
tx t t G x t x t F x t F x t tF x tΔ

+ Δ = ≈ + + + Δ  (4) 

 
In a time varying system, CHs may become established by three principal routes 
involving a (possibly infinite) sequence of bifurcations of the attractor, intermittent 
disruption of a periodicity, or the topological breakup of a surface, such as a torus, 
representing several linked oscillations. These routes are studied, because a knowledge 
of all of them is essential, for instance, in characterizing chaotic dynamics of a 
dissipative system as in turbulence, or in biomedical systems; as is the case for the brain 
or in excitable cells (e.g. heart cells behavior). 
 
2.2. The Logistic Map 
 
Many researchers have dedicated their efforts to analyze CHs in different fields of 
science. Robert May, for example dealt with a system related to the insect population 
dynamics. His work became known as the logistic map; he evaluated the insect 
population in one year, 1iX + , from the previous year, iX . 
 

1 ( 1)i i iX X Xη+ = − .  (5) 
 
The parameter η  defines environmental characteristics. There is no doubt about the 
simplicity of this mathematical model, however, the diversity of its dynamical response 
is very rich. The linear differential equation (5) can be easily solved: 1 0

i
iX X η+ = , 

which states that, if, on average, each insect lays η  eggs and all eggs hatch, then the 
population will grow exponentially, provided 1η > . Taking into account for the 
interactions between insects which fight and kill each other for limited food, contagious 
epidemic, etc., Eq. (5) is modified into 
 

2
1 1 2i i iX X Xη η+ = − .  (6) 

 
Despite its apparently simple form, Eq. (6) exhibits a complex dynamical behavior. One 
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of the two parameters 1η , or 2η , can be scaled out, normalizing 1iX +  and writing it 
down in a form which appears more frequently in the literature, 
 

2
1 1 ( 1 1) (0 2)i i iX X Xμ μ+ = − , ∈ − , , ∈ , .  (7) 

 
Using a computer, covering the parameter range (0 2)μ∈ ,  and recursively computing in 
small steps of time for each parameter value μ , one can arrive at the bifurcation 
diagram in the X μ−  plane (see Figure 1).  
 
For 0 75μ ≤ . , the limiting set consists of one point. This is the fixed point of the 
mapping. For 0 75μ = .  to 1.2 the limiting set comprises two points, giving rise to a 2-
cycles or period 2 orbits. Then thereafter one obtains consecutively the 4 8 2i, , ... ...cycles, 
forming a period-doubling bifurcation sequence (see Figure 1). Downwards along the 
μ  axis, it can be observed a series of 2i  bands of chaotic behavior. A bifurcation 
diagram is essentially a diagram of attractors by its behavior to be attracted, generating 
a sufficient number of transients. Fixed points and periodic points are trivial attractors, 
while the darkened vertical segments are chaotic attractors.  

 
 

Figure 1. The bifurcation diagram for the logistic map 
 
A self-similar structure can be seen. It is remarkable, that all these features happen to be 
shared by many other nonlinear systems. Both, the global structure of the bifurcation 
diagram and the numerical characteristics of many local transitions within the diagram 
are universal properties characterized by two parameters denominated δ  and α  and 
discovered by Feigenbaum in 1975, these were derived from a mathematical model of 
animal population, studying the fixed points of the logistic map, and characterizing the 
geometrical approach of the bifurcation parameter to its limit value when the parameter 
μ  is increased for fixed x . The δ  constant is calculated using the period-doubling 
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region, and evaluating the distance between successive bifurcation points, nμ , which 
shrinks geometrically in such a fashion that the ratio of the intervals defines it.  
 

1

2 1

lim 4 669201609102990n n
n

n n

μ μδ
μ μ

+
→∞

+ +

−
= = . ...

−
 (8) 

 
The α  parameter or associated reduction parameter is defined as the separation of 
adjacent elements of period doubled attractors (see figure 2)  
 
from one double to the next, has a value of 
 

1

lim 2 502907875n
n

n

d
d

α →∞
+

= = − . ...,  (9) 

 
 

 
 

Figure 2. The successive bifurcations used to evaluates the α  parameter 
 
where nd  is the value of the nearest cycle element to 0 in the 2n  cycle. Until 1999, both 
quantities have been evaluated to 1018 decimal places. Amazingly, the Feigenbaum 
constants δ  and α  are universal for all one-dimensional maps ( )f x , if the map has a 
single locally quadratic maximum. This was conjectured by Feigenbaum, and 
demonstrated rigorously by Lanford in 1982 for the case 2r = , and by Epstein in 1985, 
for all 14r <  in the map ( ) 1 rf x xμ= − with r  an generic test exponent. The most 
significant contribution of M. J. Feigenbaum comprises not only the discovery of these 
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universal constants, but also his device of a universal, renormalization group approach, 
which reveals the physical meaning of these constants and opens up a way to calculate 
them with high precision, independently of any particular model. This characteristic 
feature permit us make to some predictions concerning some other problem under study 
but pertaining to the same universality class. The behavior of this quadratic map is 
typical for many DS. One year after their discovery, the period-doubling route to CHs 
and the constants δ  and α , appeared in some equations used to describe hydrodynamic 
flow, which will be treated in Section (5). The logistic map serves as a representative 
example of a wide class of one dimensional mapping, i.e., of functions with only one 
hump. Those universal properties that depend on only one local maximum, but not on 
the nature of the maximum, are sometimes called of structural universality. Close to the 
local maximum at 0X X= , and if the nonlinear functions f  may be expanded in the 
form  
 

max 0( ) ( )h X h X X βη= − − + ...,  (10) 
 
those properties, which are shared by maps with one and the same value of β , are 
classified as belonging to some kind of metric universality.  
 
 
 
- 
- 
- 
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