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Summary 
 
Quantum gravity was born as that branch of modern theoretical physics that tries to 
unify its guiding principles, i.e., quantum mechanics and general relativity. Nowadays it 
is providing new insight into the unification of all fundamental interactions, while 
giving rise to new developments in mathematics. The various competing theories, e.g. 
string theory and loop quantum gravity, have still to be checked against observations. 
We review the classical and quantum foundations necessary to study field-theory 
approaches to quantum gravity, the passage from old to new unification in quantum 
field theory, canonical quantum gravity, the use of functional integrals, the properties of 
gravitational instantons, the use of spectral zeta-functions in the quantum theory of the 
universe, Hawking radiation, some theoretical achievements and some key experimental 
issues. 
 
1. Introduction 
 
The aim of theoretical physics is to provide a clear conceptual framework for the wide 
variety of natural phenomena, so that not only are we able to make accurate predictions 
to be checked against observations, but the underlying mathematical structures of the 
world we live in can also become sufficiently well understood by the scientific 
community. What are therefore the key elements of a mathematical description of the 
physical world? Can we derive all basic equations of theoretical physics from a set of 
symmetry principles? What do they tell us about the origin and evolution of the 
universe? Why is gravitation so peculiar with respect to all other fundamental 
interactions?  
 
The above questions have received careful consideration and have led, in particular, to 
several approaches to a theory aimed at achieving a synthesis of quantum physics on the 
one hand, and general relativity on the other. This remains, possibly, the most important 
task of theoretical physics. In the early work of the 1930s, Rosenfeld [131,132] 
computed the gravitational self-energy of a photon in the lowest order of perturbation 
theory, and obtained a quadratically divergent result. With hindsight, one can say that 
Rosenfeld’s result implies merely a renormalization of charge rather than a non-
vanishing photon mass [40]. A few years after Rosenfeld’s papers [131,132], Bronstein 
realized that the limitation posed by general relativity on the mass density radically 
distinguishes the theory from quantum electrodynamics and would ultimately lead to the 
need to reject Riemannian geometry and perhaps also to reject our ordinary concepts of 
space and time [20,135].  
 
Indeed, since the merging of quantum theory and special relativity has given rise to 
quantum field theory in Minkowski spacetime, while quantum field theory and classical 
general relativity, taken without modifications, have given rise to an incomplete scheme 
such as quantum field theory in curved spacetime [65], which however predicts 
substantially novel features like Hawking radiation [87,88], here outlined in Section 7, 
one is led to ask what would result from the “unification” of quantum field theory and 
gravitation, despite the lack of a quantum gravity phenomenology in earth-based 
laboratories. The resulting theory is expected to suffer from ultraviolet divergences 
[157], and the 1-loop [94] and 2-loop [74] calculations for pure gravity which are 
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outstanding pieces of work. As is well described in Ref. [157], if the coupling constant 
of a field theory has dimension massd  in 1c= =  units, then the integral for a 
Feynman diagram of order N  behaves at large momenta like A Ndp dp−∫ , where A  
depends on the physical process considered but not on the order N . Thus, the 
“harmful” interactions are those having negative values of d , which is precisely the 
case for Newton’s constant G , where 2d = − , since 39 26 67 10 GeVG − −= . ×  in 

1c= =  units. More precisely, since the scalar curvature contains second derivatives of 
the metric, the corresponding momentum-space vertex functions behave like 2p , and 

the propagator like 2p− . In d  dimensions each loop integral contributes dp , so that 
with L  loops, V  vertices and P  internal lines, the superficial degree D  of divergence 
of a Feynman diagram is given by [53]  
 

2 2D dL V P= + − .         (1) 
 
Moreover, a topological relation holds:  
 

1L V P= − + ,          (2) 
 
which leads to [53]  
 

( 2) 2D d L= − + .         (3) 
 
In other words, D  increases with increasing loop order for 2d > , so that it clearly leads 
to a non-renormalizable theory.  
 
A quantum theory of gravity is expected, for example, to shed new light on singularities 
in classical cosmology. More precisely, the singularity theorems prove that the Einstein 
theory of general relativity leads to the occurrence of spacetime singularities in a 
generic way [86]. At first sight one might be tempted to conclude that a breakdown of 
all physical laws occurred in the past, or that general relativity is severely incomplete, 
being unable to predict what came out of a singularity. It has been therefore pointed out 
that all these pathological features result from the attempt of using the Einstein theory 
well beyond its limit of validity, i.e. at energy scales where the fundamental theory is 
definitely more involved. General relativity might be therefore viewed as a low-energy 
limit of a richer theory, which achieves the synthesis of both the basic principles of 
modern physics and the fundamental interactions in the form currently known.  
 
So far, no less than 16 major approaches to quantum gravity have been proposed in the 
literature. Some of them make a direct or indirect use of the action functional to develop 
a Lagrangian or Hamiltonian framework. They are as follows.  
 
1. Canonical quantum gravity [16,17,43,44,32,99,100,6,54,144].  
2. Manifestly covariant quantization [116, 33, 94, 74, 7, 152, 21, 103].  
3. Euclidean quantum gravity [68, 90].  
4. R-squared gravity [142].  
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5. Supergravity [64,148].  
6. String and brane theory [162, 98, 10].  
7. Renormalization group and Weinberg’s asymptotic safety [129,106].  
8. Non-commutative geometry [26, 75].  

Among these 8 approaches, string theory is peculiar because it is not field-theoretic, 
spacetime points being replaced by extended structures such as strings.  
A second set of approaches relies instead upon different mathematical structures with 
a more substantial (but not complete) departure from conventional pictures, i.e.  

9. Twistor theory [122,123].  
10. Asymptotic quantization [67, 5].  
11. Lattice formulation [114, 22].  
12. Loop space representation [133,134,136,145,154].  
13. Quantum topology [101], motivated by Wheeler’s quantum geometrodynamics 
[159].  
14. Simplicial quantum gravity [72, 1, 109, 2] and null-strut calculus [102].  
15. Condensed-matter view: the universe in a helium droplet [155].  
16. Affine quantum gravity [105].  
 
After such a concise list of a broad range of ideas, we hereafter focus on the 
presentation of some very basic properties which underlie whatever treatment of 
classical and quantum gravity, and are therefore of interest for the general reader rather 
than (just) the specialist. He or she should revert to the above list only after having gone 
through the material in Sections 2–7.  
 
2. Classical and Quantum Foundations 
 
Before any attempt to quantize gravity we should spell out how classical gravity can be 
described in modern language. This is done in the subsection below.  
 
2.1. Lorentzian Spacetime and Gravity 
 
In modern physics, thanks to the work of Einstein [51], space and time are unified into 
the spacetime manifold ( )M g, , where the metric g  is a real-valued symmetric bilinear 
map  
 

( ) ( )p pg T M T M: × → R  
 
of Lorentzian signature. The latter feature gives rise to the light-cone structure of 
spacetime, with vectors being divided into timelike, null or spacelike depending on 
whether ( )g X X,  is negative, vanishing or positive, respectively. The classical laws of 
nature are written in tensor language, and gravity is the curvature of spacetime. In the 
theory of general relativity, gravity couples to the energy-momentum tensor of matter 
through the Einstein equations  
 

4
1 8
2

GR g R T
cμν μν μν
π

− = .        (4) 
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The Einstein–Hilbert action functional for gravity, giving rise to Eq. (4), is 
diffeomorphism-invariant, and hence general relativity belongs actually to the general 
set of theories ruled by an infinite-dimensional [31] invariance group (or pseudo-group). 
With hindsight, following DeWitt [39], one can say that general relativity was actually 
the first example of a non-Abelian gauge theory (about 38 years before Yang–Mills 
theory [164]).  
 
Note that the spacetime manifold is actually an equivalence class of pairs ( )M g, , 
where two metrics are viewed as equivalent if one can be obtained from the other 
through the action of the diffeomorphism group Diff ( )M . The metric is an additional 
geometric structure that does not necessarily solve any field equation.  
 
2.2. From Schrödinger to Feynman 
 
Quantum mechanics deals instead, mainly, with a probabilistic description of the world 
on atomic or sub-atomic scale. It tells us that, on such scales, the world can be described 
by a Hilbert space structure, or suitable generalizations. Even in the relatively simple 
case of the hydrogen atom, the appropriate Hilbert space is infinite-dimensional, but 
finite-dimensional Hilbert spaces play a role as well. For example, the space of spin-
states of a spin- s  particle is 2 1s+C  and is therefore finite-dimensional. Various pictures 
or formulations of quantum mechanics have been developed over the years, and their 
key elements can be summarized as follows:  
 
(i) In the Schrödinger picture, one deals with wave functions evolving in time according 
to a first-order equation. More precisely, in an abstract Hilbert spaceH , one studies the 
Schrödinger equation  
 

ˆi d H
dt
ψ ψ= ,          (5) 

 
where the state vector ψ  belongs to H , while Ĥ  is the Hamiltonian operator. In wave 
mechanics, the emphasis is more immediately put on partial differential equations, with 
the wave function viewed as a complex-valued map ( )x tψ : , →C  obeying the equation  
 

2
i

2
V

t m
ψ ψ

⎛ ⎞∂
= − Δ + ,⎜ ⎟⎜ ⎟∂ ⎝ ⎠

       (6) 

 
where −Δ  is the Laplacian in Cartesian coordinates on 3R  (with this sign convention, 
its symbol is positive-definite).  
 
(ii) In the Heisenberg picture, what evolves in time is instead the operators, according 
to the first-order equation  
 

ˆ ˆ ˆi [ ]dA A H
dt

= , .         (7) 
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Heisenberg performed a quantum mechanical re-interpretation of kinematic and 
mechanical relations [93] because he wanted to formulate quantum theory in terms of 
observables only.  
 
(iii) In the Dirac quantization, from an assessment of the Heisenberg approach and of 
Poisson brackets [41], one discovers that quantum mechanics can be made to rely upon 
the basic commutation relations involving position and momentum operators:  
 

ˆ ˆ ˆ ˆ[ ] [ ] 0j k
j kq q p p, = , = ,  (8) 

 
ˆ ˆ[ ] i jj

kkq p δ, = .         (9) 
 
For generic operators depending on ˆ ˆq p,  variables, their formal Taylor series, jointly 
with application of (8) and (9), should yield their commutator.  
 
(iv) Weyl quantization. The operators satisfying the canonical commutation relations (9) 
cannot be both bounded [57], whereas it would be nice to have quantization rules not 
involving unbounded operators and domain problems. For this purpose, one can 
consider the strongly continuous 1-parameter unitary groups having position and 
momentum as their infinitesimal generators. These read as ˆi( ) e tqV t ≡ , ˆi( ) e spU s ≡ , and 
satisfy the Weyl form of canonical commutation relations, which is given by  
 

i( ) ( ) e ( ) ( )stU s V t V t U s= .        (10) 
 
Here the emphasis was, for the first time, on group-theoretical methods, with a 
substantial departure from the historical development, that relied instead heavily on 
quantum commutators and their relation with classical Poisson brackets.  
 
(v) Feynman quantization (i.e., Lagrangian approach). The Weyl approach is very 
elegant and far-sighted, with several modern applications [57], but still has to do with a 
more rigorous way of doing canonical quantization, which is not suitable for an 
inclusion of relativity. A spacetime approach to ordinary quantum mechanics was 
instead devised by Feynman [62] (and partly Dirac himself [42]), who proposed to 
express the Green kernel of the Schrödinger equation in the form  
 

i
all paths

[ ] e S
f f i iG x t x t dμ/, ; , = ,∫       (11) 

 
where dμ  is a suitable (putative) measure on the set of all spacetime paths (including 
continuous, piecewise continuous, or even discontinuous paths) matching the initial and 
final conditions. This point of view has enormous potentialities in the quantization of 
field theories, since it preserves manifest covariance and the full symmetry group, being 
derived from a Lagrangian.  
 
It should be stressed that quantum mechanics regards wave functions only as a technical 
tool to study bound states (corresponding to the discrete spectrum of the Hamiltonian 
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operator Ĥ ), scattering states (corresponding instead to the continuous spectrum of 
Ĥ ), and to evaluate probabilities (of finding the values taken by the observables of the 
theory). Moreover, it is meaningless to talk about an elementary phenomenon on atomic 
(or sub-atomic) scale unless it is registered [160], and quantum mechanics in the 
laboratory needs also an external observer and assumes the so-called reduction of the 
wave packet (see [57] and references therein). There exist indeed different 
interpretations of quantum mechanics, e.g. Copenhagen [160], hidden variables [15], 
many worlds [60, 35].  
 
2.3. Spacetime Singularities 
 
Now we revert to the geometric side. In Riemannian or pseudo-Riemannian geometry, 
geodesics are curves whose tangent vector X  moves by parallel transport [85], so that 
eventually  
 

0dX X X
ds

λ
λ μ ν
μν+ Γ = ,        (12) 

 
where s  is the affine parameter and λ

μνΓ  are the connection coefficients. In general 
relativity, timelike geodesics correspond to the trajectories of freely moving observers, 
while null geodesics describe the trajectories of zero-rest-mass particles (Section 8.1 of 
Ref. [85]). Moreover, a spacetime ( )M g,  is said to be singularity-free if all timelike 
and null geodesics can be extended to arbitrary values of their affine parameter. At a 
spacetime singularity in general relativity, all laws of classical physics would break 
down, because one would witness very pathological events such as the sudden 
disappearance of freely moving observers, and one would be completely unable to 
predict what came out of the singularity. In the 1960s, Penrose [121] proved first an 
important theorem on the occurrence of singularities in gravitational collapse (e.g. 
formation of black holes). Subsequent work by Hawking [79, 80, 81, 82, 83], Geroch 
[66], Ellis and Hawking [84, 52], Hawking and Penrose [86] proved that spacetime 
singularities are generic properties of general relativity, provided that physically 
realistic energy conditions hold. Very little analytic use of the Einstein equations is 
made, whereas the key role emerges of topological and global methods in general 
relativity.  
 
On the side of singularity theory in classical cosmology, explicit mention should be 
made of the work in Ref. [14], since it has led to significant progress by Damour et al. 
[27], despite having failed to prove singularity avoidance in classical cosmology. As 
pointed out in Ref. [27], the work by Belinsky et al. is remarkable because it gives a 
description of the generic asymptotic behaviour of the gravitational field in 4-
dimensional spacetime in the vicinity of a spacelike singularity. Interestingly, near the 
singularity the spatial points essentially decouple, i.e. the evolution of the spatial metric 
at each spatial point is asymptotically governed by a set of second-order, non-linear 
ordinary differential equations in the time variable [14]. Moreover, the use of qualitative 
Hamiltonian methods leads naturally to a billiard description of the asymptotic 
evolution, where the logarithms of spatial scale factors define a geodesic motion in a 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

FUNDAMENTALS OF PHYSICS – An Introduction to Quantum Gravity – Giampiero Esposito 

©Encyclopedia of Life Support Systems (EOLSS) 

region of the Lobachevskii plane, interrupted by geometric reflections against the walls 
bounding this region. Chaos follows because the Bianchi IX billiard has finite volume 
[27]. A self-contained derivation of the billiard picture for inhomogeneous solutions in 
D  dimensions, with dilaton and p -form gauge fields, has been obtained in Ref. [27].  
 
2.4. Unification of All Fundamental Interactions 
 
The fully established unifications of modern physics are as follows.  
 
(i) Maxwell: electricity and magnetism are unified into electromagnetism. All related 

phenomena can be described by an antisymmetric rank-two tensor field, and 
derived from a 1-form, called the potential.  

 
(ii) Einstein: space and time are unified into the spacetime manifold. Moreover, inertial 

and gravitational mass, conceptually different, are actually unified as well.  
 
(iii) Standard model of particle physics: electromagnetic, weak and strong forces are 

unified by a non-Abelian gauge theory, normally considered in Minkowski 
spacetime (this being the base space in fibre-bundle language).  

 
The physics community is now familiar with a picture relying upon four fundamental 
interactions: electromagnetic, weak, strong and gravitational. The large-scale structure 
of the universe, however, is ruled by gravity only. All unifications beyond Maxwell 
involve non-Abelian gauge groups (either Yang–Mills or Diffeomorphism group). At 
least three extreme views have been developed along the years, i.e.,  
 
(i) Gravity arose first, temporally, in the very early Universe, then all other fundamental 

interactions.  
 
(ii) Gravity might result from Quantum Field Theory (this was the Sakharov idea 

[139]).  
 
(iii) The vacuum of particle physics is regarded as a cold quantum liquid in equilibrium. 

Protons, gravitons and gluons are viewed as collective excitations of this liquid 
[155].  

 
- 
- 
- 
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