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Summary 
 
The novel experimental technique – femtospectroscopy, that uses femtosecond laser 
pulses, as well as ultrashort electron and X-ray pulses, is illustrated by its applying for 
studies of nanoscale objects, molecular aggregates, carbon nanotubes, living cell. 
 
1. Introduction 
 
Femtosecond nanophotonics — the basic physical phenomena behind the interaction of 
ultrashort laser pulses with nanoscale objects, nanocomposite materials, supramolecular 
structures, and molecular aggregates. Femtosecond laser  pulses pave a way to 
achieving high intensities of electromagnetic  radiation without irreversible damage to 
materials, making it possible to  observe unique regimes of interaction of the light field 
with nanostructures and molecular aggregates. Dielectric and electron   confinement, as 
well as resonances due to quantum size effects and  collective phenomena in 
supramolecular and aggregate structures, radically  enhance nonlinear-optical 
interactions of ultrashort pulses. These  phenomena offer interesting solutions for a 
high-sensitivity  nonlinear-optical metrology of nanostructured materials, including the  
analysis of their composition, structure, and morphology, suggesting new   attractive 
strategies for the control, switching, and transformation of   ultrashort pulses. 
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2. Femtosecond Nanophotonics  
 
Time-resolved femtosecond spectroscopy can be used for solving various problems 
related to research on nanoscale particles. For example, studies of noble metal 
nanoparticles (Ag and Au) were reviewed by Hartland (2006). The attention of 
researchers to these systems is due to the fact that plasmon resonance is of great interest 
for practical applications. Plasmon resonance is suitable for local enhancement of the 
electromagnetic field strength by several orders of magnitude. Manifestation of plasmon 
resonance is strongly dependent on the nanoparticle shape and size and on the dielectric 
environment. A feature of the Ag and Au metals is that plasmon resonance in them can 
be achieved in the visible spectral region. Electromagnetic field enhancement has found 
increasing application in optical methods of detection of biological objects, in 
photocatalysis, microscopy, and in devices for manipulation of visible light. 
 

 
 

Figure 1. Kinetics of photoinduced charge carriers in iron oxide (a) and titania (b) 
nanocrystals; a — in  2 3Fe Oγ −  (1) and 2 3Fe Oα −  (2) colloidal nanocrystals, in 

2 3Fe Oα −  nanocrystals formed in ferritin protein vesicle (3), and in Nafion ion-
exchange membrane (4). Mathematical expression for the "stretched" exponent used to 

describe the experimental data has the form 
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( ) ( )0 [– /A t A exp t βτΔ = ]. 
 
Yet another avenue of research is represented by investigations on interparticle 
interaction and the interaction between nanoparticles and their environment.  In 2005, 
say,  Huang with coathors studied small-amplitude laser-induced oscillations.  By 
analyzing these oscillations one can obtain information on interparticle interactions. 
Measurements of vibrational beats in individual particles make it possible to determine 
the dephasing time of the vibrational motion and thus obtain information on the 
interaction between particles and their environment (see van Dijk et al., 2005). 
 
The trapping and recombination dynamics of photoexcited charge carriers in titania 
( 2TiO ) (Sobennikov et al., 2005)  and iron oxide ( 2 3Fe O )  (Gostev et al., 2004) 
nanocrystals was studied for different crystal structures and particle size, shape and 
surface type. It was shown that the relaxation mechanism of the excitation energy of 
iron oxides is governed by the electronic structure of the 3Fe + 3d-shell, being basically 
different from the relaxation mechanism for titanium oxides. Despite different 
relaxation mechanisms, in both cases the dynamics is described by a "stretched 
exponent" (Figure 1) with two parameters, namely, β  is a characteristic of the sample, 
and τ  is the characteristic time of relaxation. The parameter β  determines the 
difference between relaxation mechanisms. It was established that the pH value of 
suspension affects the duration of relaxation processes on 2TiO  surface and does not 
influence the parameter β . 
 

 
 

Figure 2. Dynamics of differential photo-initiated bleaching and absorption spectra of 
single-wall carbon nanotubes on the time scale from 80 to 1000 fs. Along the abscissa 

axis the energies of the probe pulse photons are shown. Along the ordinate axis the 
differential optical density is shown. Dashed lines denote the absorption spectra of 

excitons. 
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Qualitatively new spectral and dynamic features of the bleaching and absorption spectra 
of single-wall carbon nanotubes under the action of femtosecond pulses applied at λ  = 
308, 455, 616, and 700 nm (Figure 2) were discovered (see Nadtochenko et al., 2005). 
A broad bleaching band due to collective electron motions depends only slightly on the 
wavelength of the excitation pulse. Analysis showed that peaks in the bleaching region 
correspond to singularities of the density of states and the peaks in the absorption region 
correspond to exciton transitions. Intra- and inter-band relaxation processes were 
studied experimentally. Spectral indications were revealed and the hierarchy of 
relaxation processes of various excitations created in single-wall carbon nanotubes was 
interpreted. The experimentally established order of characteristic times of relaxation 
processes is as follows: plasmon scattering (<50 fs); formation of screened electrons 
and holes (50—500 fs); and formation and loss of excitonic states (10—100 ps). 
 
3. Femtosecond Biophotonics 
 
Studies on femtobiology were devoted to primary processes in retinal-containing 
proteins (Antipin et al., 2004), rearrangement of water-protein medium in the primary 
photosynthesis processes (Paschenko et al., 2004), dynamics of primary photosynthesis 
processes (Shuvalov and Yakovlev, 2003), and mechanisms of response to microscopic 
environment of fluorescent probes in biological objects (Smitienko et al., 2008). 
 
We will only consider a study made by Smitienko et al., of visual pigment rhodopsin 
whose molecule is comprised of a protein fragment and a chromophore group (retinal). 
The system was studied under pulsed irradiation with (i) visible light absorbed by the 
chromophore fragment of the molecule and (ii) UV light. The novelty of the 
investigations using UV light consisted in that the rhodopsin photocycle could be 
switched on by absorption of not only visible, but also UV light (λ  = 308 nm) in the 
chromophore moiety. It was assumed that in the latter case the formation of retinal in 
the S1 electronic state is due to intramolecular energy transfer from the tryptophan 
amino acid residue nearest to the chromophore to retinal. The characteristic times of 
these processes were determined. Subsequent stages of the photocycle are characterized 
by the same characteristic times as upon exposure to visible light. 
 
4. Femtosecond Microscopy 
 
High intensity (peak power) of femtosecond light pulses allows multiphonon light 
absorption and generation of ultrashort electron and X-ray pulses. These features of 
femtosecond light pulses are employed in femtosecond optical, electron, and X-ray 
microscopy. 
 
4.1. Femtosecond Optical Microscopy  
 
Femtosecond spectroscopy methods are widely used to improve the selectivity and 
contrast in optical microscopy. Short pulse durations allow multiphoton absorption to 
be efficient even at low pulse energies. This makes it possible to eliminate the undesired 
background and improve the image contrast. The use of IR radiation for multiphonon 
absorption in biological systems offers additional advantages because it can fall in the 
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transparency window of biological tissues, have a weak photo action on living systems, 
and penetrate deeply into their interiors. 
 
Now we will consider two examples of application of two-photon femtosecond 
microscopy in studies of nanoscale (Zolovatin et al., 2008) and biological objects 
(Gularyan et al., 2006). 
 
Excitation of Ag nanoparticles photocatalytically deposited on the surface of 

2TiO nanoparticles to form a mesoporous ( / 2Ag TiO ) film with light of a titanium-
sapphire laser (λ  = 800 nm, pulse duration 100 fs) gave rise to two-photon 
luminescence observed as bright "hot spots". Their luminescence spectra and the 
dependence of luminescence intensity on the polarization and wavelength of incident 
femtosecond light pulse were studied by scanning femtosecond microscopy. It was 
shown that "hot-spot" luminescence is about 1000 times brighter than the background 
luminescence. The high brightness of "hot spots" is due to electromagnetic field 
enhancement owing to plasmon resonance. Possible configurations of Ag nanoparticles, 
for which maximal field enhancement due to plasmon resonance occurs, were analyzed. 
Specific features of the / 2Ag TiO  system determine its prospects for applications in 
photocatalysis, single-molecule spectroscopy, and in visualization of biological objects. 
 
The second example concerns investigations of HeLa living cells. A living cell was 
dyed with a membrane fluorescent probe 4-dimethylaminochalcone (DMC), which 
mainly fluoresces from lipid-containing organelles. A fluorescent image of a single cell 
and subcell organelles was obtained for the first time. Two-photon excitation made it 
possible to avoid cell photodamage, to improve the contrast of its fluorescent image, 
and to achieve a high spatial resolution. 
 
The resolution of conventional optical microscopes including a system of lenses is 
limited to the diffraction limit approximately equal to half the wavelength of incident 
light. Near-field microscopy uses a highly localized (spot size 10—100 nm) 
electromagnetic field produced near the tip of the optical probe. The spatial resolution 
of such microscopes is much higher than the diffraction limit. A fluorescent 
femtosecond near-field microscopy study (Zubova et al., 2005) revealed that protein 
films contain fluorescing ellipsoidal granules. An investigation of the dependence of 
fluorescence on various parameters suggested the existence of two forms of yellow 
fluorescent protein from coral (zFP538). Ultrafast spectroscopic technique characterized 
by nanometer spatial resolution and femtosecond temporal resolution was proposed and 
analyzed (Brixner et al.,2005). 
 
Note that currently femtosecond microscopy uses nonlinear optical methods. For 
instance, optical microscopy employs coherent anti-Stokes Raman scattering (CARS) to 
improve the selectivity, contrast, and sensitivity in femtosecond optical microscopy — 
methods of coherent control as it shown by Dudovich et al., 2002). Using selective two-
photon excitation with sinusoidal phase modulation, endogenous fluorescence was 
distinguished against the fluorescence of labels in biological samples (Ogivie et al., 
2006). 
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Combining optical microscopy and femtosecond pulses allowed one to construct a 
femtosecond optical manipulator for moving nanoparticles and biological objects. The 
device can operate as a "lancet", which cleaves chemical bonds due to multiphonon 
absorption of femtosecond light pulse (see Zalesskii et al., 2008). 
 

- 

- 
- 
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