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Summary 
 
There are various transport phenomena occurred in fuel cells, e.g., multi-component gas 
flow in cells and manifolds, heat and mass transfer of gas species in various functional 
components and sites. These physical processes are strongly affected by 
chemical/electrochemical reactions in nano-/micro-structured electrodes and 
electrolytes. For example, the electrochemical reactions generate or consume chemical 
species together with electric current production, which take place at the active sites (so-
called three-phase boundaries, or TPBs) in all kinds of fuel cells. Furthermore, potential 
water phase change and two-phase flow in proton exchange membrane fuel cells 
(PEMFCs) and internal reforming reactions of hydrocarbon fuels in solid oxide fuel 
cells (SOFCs) are strongly coupled with the electrochemical reactions and other 
transport processes to make the analysis and modeling even more difficult.  
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It is a common practice that, for modeling and analysis at the unit-cell and component 
level, typically CFD-based approaches might be suitable. Microscopic modeling 
approaches are required to analyze the various processes in, e.g., catalyst layers and 
active surfaces, while on the fuel cell stack and system levels, methods like lumped 
parameter analysis and overall heat/mass balances are more suitable. This paper outlines 
the various kinds of the approaches for modeling and numerical analysis, in terms of 
their characteristics, applicability and limitations.  
 
1. Introduction 
 
It is clear that extensive research activities have been carried out on fuel cells worldwide 
during last decades, with particular interest and focus on solid oxide fuel cell (SOFC) 
and proton exchange membrane fuel cell (PEMFC) systems. High performance, low 
cost and high reliability have been considered as the primary aspects and concerns for 
fuel cells to compete with well-developed fossil fuel power generation devices, such as 
internal combustion engines. However, the most research interests have focused on new 
material development, processing and manufacturing techniques for specific systems. 
As expected, currently available fuel cell materials appear to be adequate for near-term 
markets with higher cost entry points, and industries now focus on fuel cell design and 
optimization for better performance, improved durability, cost reduction and better cold-
start characteristics, and system studies including hybrid or integrated fuel cell systems. 
 
In these cases more attention should be placed on detailed analysis of transport 
processes in fuel cell functional materials, components and unit cells, even at micro- 
and nano-scale levels. This is because the majority of the physical and chemical 
processes take place in such small regions that are inaccessible to experimental 
measurement. Furthermore, water-phase change/multi-phase flow in PEMFCs and 
internal reforming reactions of hydrocarbon fuels in SOFCs are strongly coupled with 
the electrochemical reactions and other transport processes in the catalyst layers to make 
the physical phenomena extremely complicated. On the other hand, extensive research 
work is also needed for fuel cell stacks for the purpose to efficiently deliver required 
power output at the load operating voltage, and to achieve proper water/thermal 
management for an integrated power plant including various units.   

Scientific models and simulations have been extremely important tools for many 
industrial applications. On the one hand, the micro-scale approaches, e.g., Density 
Functional Theory (DFT) and Molecular Dynamics (MD), and the meso-scale ones, 
e.g., Monte Carlo (MC) and Lattice-Boltzmann methods (LBM), take into account the 
effects of the multi-functional materials microscopic structures on the charge-transfer 
(electrochemical) reactions at active sites, the surface chemistry and the gas-phase 
chemistry based on elementary reaction kinetics (individual chemical reaction steps 
between intermediates) in the porous electrodes. On the other hand, there are well-
developed computational fluid dynamics (CFD) codes, which are widely applied to 
optimize design or investigate the structures of a flow at a macroscopic scale. Similarly 
commercial codes are available for simulating integrated power system including 
several units. It is possible to use such simulation tools to make improvements to 
product design where physical design and testing are too expensive or not even possible.  
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This paper concerns the current status of fundamental models and analysis approaches 
for fuel cells and systems. It should be mentioned that this work is limited to PEMFCs 
and SOFCs. However, there are various models for other fuel cells, e.g., molten 
carbonate fuel cell (MCFC) in Gundermann et al. (2008) and Brouwer et al. (2005), and 
for fuel cell material and applications in Peighambardoust et al. (2010).  
 
2. Multi-phase Transport Processes and Reactions in Fuel Cells  
 
The fuel cell is not a new invention, since the electrochemical reaction was discovered 
already in 1838-39. The interest in fuel cells has been growing exponentially. Fuel cell 
systems are still an immature technology in early phases of development, as can be 
noted due to a lack of a dominant design, few commercial systems and a low market 
demand. The creation of strategic niche markets and search for early market niches are 
of a vital importance for the further development. It is expected that mass production 
will start when a dominant design is found, and then production cost will significantly 
decrease due to the economy of scale. 
 
The fuel cells can be examined from different points of view: as an electrochemical 
generator in a viewpoint of electrochemical reactions at continuum level, as a heat and 
mass exchanger in a perspective of fluid dynamics and transport phenomena, or as a 
chemical reactor in viewpoints of chemical reactions depending on fuel composition 
and heat effects associated with the electrochemical conversion (Andersson et al., 
2010). 
 
2.1. Fuel Cell Basics 
 
The major processes relevant to the fuel cell characteristics are similar in SOFCs and 
PEMFCs. These processes consist of the gas-phase species transport, electrochemical 
reactions, electronic and ionic transport, and heat transfer and temperature distribution. 
A unit-cell structure of fuel cells, as shown in Figure 1,  includes various components, 
such as fuel and oxidant ducts (or channels), electrolyte (polymer electrolyte membrane 
for PEMFCs), anode and cathode diffusion layers, catalyst layers in between them, as 
well as current inter-conductors/-connectors. 
 
Unit cells are further organized together into stacks to supply the required electricity. In 
a fuel cell stack, the gas transport processes consist of the fuel and oxidant gas flows 
which are separated through the gas manifolds where no electrochemical reactions 
occur. The fuel and oxidant gases flow along cell ducts (or channels), where there is 
absorption of the reactants and injection of reactive products from/to the active sites. In 
the porous layers (electrodes), transport of the reactant gases occur towards triple-phase 
boundary (TPB, where electrode, electrolyte and gas meet) between the electrolyte and 
the electrodes, and the exhaust gases are rejected to the cell ducts (or channels) through 
the open pores. The exhaust gases from each cell are discharged through the gas output 
manifolds. 
 
The electrolyte is non porous material, for instance, Y2O3 stabilized ZrO2 (YSZ) in 
SOFCs. At an operating temperature (between 600-1000 °C for SOFCs and around 80 
°C for PEMFCs), the electrolyte becomes non-conductive for electrons, but conductive 
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to oxygen ions (in SOFCs) and hydrogen protons (in PEMFCs). The SOFC cathodes are 
mostly made from electronically conducting oxides or mixed electronically conducting 
and ion-conduction ceramics. The anode consists normally of nickel/yttria stabilized 
zirconia (Ni/YSZ) cermet. SOFCs can be designed with planar, tubular or monolithic 
structures. The planar design is normally more compact, compared to the tubular design, 
i.e., a higher specific volume power can be obtained. Tubular and planar SOFCs can be 
either electrolyte-, anode-, cathode- or metal-supported. An electrolyte-supported cell 
has thin anode and cathode (~50 μm), and the thickness of the electrolyte is more than 
100 μm. This design works preferably at temperatures around 1000 °C for SOFCs. In an 
electrode-supported SOFC either the anode (anode-supported) or the cathode (cathode-
supported) is thick enough to serve as the supporting substrate for cell fabrication, 
normally between 0.3 and 1.5 mm. The electrolyte is in this configuration very thin, and 
the operating temperature can be reduced to an intermediate range.  
 

 
                               (a)                                                          (b) 
 

Figure 1. Schematic sketch of a unit cell for: a) PEMFC, and b) SOFC. 
 
For PEMFCs a polymer membrane is used in between anode and cathode. The 
membrane is made by substituting fluorine for hydrogen in long chain polymers and the 
process is called perfluorination. After this, a side chain is added, ending with sulfonic 
acid. The perflourination of the polymer gives it the chemical resistance and mechanical 
strength while the addition of sulfonic acid gives it the property to carry the positive 
ions (hydrogen ions in this case). Therefore, the electrolyte in PEM fuel cells is 
sometimes also called proton exchange membranes. Despite the differences in terms of 
materials, it is obvious that all the fuel cell electrolytes should essentially have the 
following properties, such as: they should be chemically resistant, and sufficiently 
strong so that they can be casted in very small thicknesses.  
 
- 
- 
- 
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