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Summary 
 
The history of celestial mechanics is first briefly surveyed, identifying the major 
contributors and their contributions. The Ptolemaic and Copernican world models, 
Kepler’s laws of planetary motion and Newton’s laws of universal gravity are 
presented. It is shown that the orbit of a body moving under the gravitational attraction 
of another body can be represented by a conic section. The six orbital elements are 
defined, and it is indicated how they can be determined from observed positions of the 
body on the sky. Some special cases, permitting exact solutions of the motion of three 
gravitating bodies, are also treated. With two-body motion as a first approximation, the 
perturbing effects of other bodies are next derived and applied to the motions of planets, 
satellites, asteroids and ring particles. The main effects of the Earth’s oblateness on the 
motions of artificial satellites are explained, and trajectories for sending a space probe 
from one planet to another are shown. The influences of gravitational tides and non-
gravitational forces due to solar radiation and gas drag are also treated. Finally, the 
long-term evolution and stability of the Solar System are briefly discussed.  
 
1. Introduction 
 
Before turning to more technical aspects of celestial motions, a short historical survey 
will be offered. The celestial bodies and their motions must always have attracted the 
attention of observant people. The Sun, Moon and planets were in many early cultures 
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associated with gods. The names of our planets all come from Greco-Roman 
mythology. Comets were often viewed as bad omens of war, pestilence and disaster. 
The regular interval between new moons provided a basis for the first lunar calendars, 
while solar calendars were based on the apparent motion of the Sun among the stars, as 
manifested by changes in the times of rising and setting of these objects throughout the 
year. 
 
Already around 700 B.C. the Babylonians had recorded on stone tablets the motions of 
the Sun, Moon and the planets against the star background, and had predicted lunar and 
solar eclipses with remarkable precision. But they don’t seem to have had a geometrical 
picture of the motions in terms of orbits. The concept of orbits, or rather a device to 
compute orbits, was introduced by the Greek, notably Claudius Ptolemy. He developed 
in the Almagest around 140 A.D. the Ptolemaic system in which the Sun, Moon and 
planets each move in a circle (epicycle) whose center moves on the periphery of another 
circle (deferent) which is in turn centered on a point slightly displaced from the Earth’s 
center. This geocentric world picture stood the ground for 1400 years until Nicolaus 
Copernicus on his death bed in 1543 introduced the heliocentric system with the Sun in 
the middle, but it took more than 100 years before the Copernican system was generally 
accepted. 
 
The next fundamental progress was made by Johannes Kepler who in 1609 and 1619 
published his three laws of planetary motion: 
 
1. Each planetary orbit is an ellipse with the Sun situated at one of the foci. 
2. The line joining the Sun and a planet will sweep out equal areas in equal times. 
3. The cubes of the semi-major axes of the orbits are proportional to the squares of the 

planets’ periods of revolution. 
 
These laws and also Galileo Galilei’s studies of the motions of falling objects, at about 
the same time, provided the basis for Isaac Newton’s laws of motion and universal 
gravity, published in his famous Philosophiae Naturalis Principia Mathematica in 
1687: 
 
1. Every body remains at rest or uniform motion unless acted upon by an external 

force. 
2. Acceleration is proportional to the impressed force and takes place in the direction 

in which the force acts. 
3. To every action there is an equal and opposite reaction. 
4. Two point masses will attract each other with a force which is proportional to the 

product of the masses divided by the square of the distance between them, the 
proportionality factor being called the universal constant of gravitation. 

5. The gravitational attraction of an extended body of spherical shape will be as if all 
its mass had been concentrated at the center of the body. 

 
This heralded the beginning of celestial mechanics which made it possible to accurately 
predict the motions of the celestial bodies. Newton showed that the gravitational 
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attraction between two point masses, or finite bodies of spherical shape, leads to 
motions in orbits which are conic sections (see Figure 1). During the next 200 years this 
field was dominated by mathematicians and astronomers like L. Euler (1707-1783), J. 
L. Lagrange (1736-1812), P. S. Laplace (1749-1827), U. J. Leverrier (1811-1877), F. 
Tisserand (1845-1896) and H. Poincaré (1854-1912). Laplace had a very deterministic 
view of the Solar System, believing that if the positions and velocities of the celestial 
bodies could be specified at some instant, the motions at any time before or after this 
instant could be calculated with high accuracy. Lagrange showed that there are five 
possible equilibrium solutions of the three-body problem. In a failed attempt to find a 
general solution to this problem, Poincaré proved that the motions of three or more 
gravitating bodies are in general chaotic, meaning that the motions are unpredictable 
over very long time spans, thus negating Laplace’s optimistic view. As we will 
comment on later, the consequences of chaotic motion have not been fully appreciated 
until recently. 
 

 
Figure1. A circle, ellipse, parabola or hyperbola can be constructed as intersections of 

planes with a cone. 
 
The introduction of the theory of special and general relativity by A. Einstein (1879-
1955) has not affected planetary orbit theories appreciably, except for Mercury which 
moves close enough to the Sun, so that the deviation from Newtonian mechanics 
becomes measurable and was, in fact, the first confirmation of general relativity. 
Relativistic effects must also sometimes be taken into account for artificial satellites and 
space probes tracked with very high accuracy, and relativistic effects can be very 
pronounced for tight and massive binary stars. 
 
In the first half of the twentieth century celestial mechanics went into a decline for lack 
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of new and interesting problems. The launch of the first artificial satellite on 4 October 
1957 marked the beginning of a new and exciting era in celestial mechanics. The advent 
of satellites, and later space probes, brought with it a demand for not only orbit 
calculation of unprecedented accuracy, but also control of a variety of orbit types not 
manifested by the natural bodies. A plethora of new satellites, asteroids, comets and 
planetary rings have been discovered with planetary probes and powerful modern 
telescopes on the ground and in space. The dynamics of planetary rings and the 
evolution of the Solar System are presenting special challenges to celestial mechanics.  
 
2. Two-Body Problem  
 
 Let 1m  and 2m  be two point masses (or extended bodies of spherical shape with radial 
distribution of mass), a distance r  apart, which attract each other with the force 
 

1 2
2

m mF G
r

=   

 
where G  is the universal constant of gravitation. If 1r  and 2r  are the position vectors 
of the two masses measured from an arbitrary but unaccelerated point, then according to 
Newton’s second law 
 

1 1 1 2 3
rm r Gm m
r

= , 2 2 1 2 3
rm r Gm m
r

= −   

 
where 2 1r r r= −  is the position vector from 1m  to 2m , and a dot above a symbol 
means differentiation with respect to time. This gives the differential equation called the 
equation of motion of the two-body problem: 
 

3 0rr
r

μ+ =  

 
where 1 2( ).G m mμ = +  Newton showed that the resulting motion, i.e., the solution of 

this equation, can be expressed in polar coordinates ( ),  r f  as 
 

1 cos
pr

e f
=

+
  

 
which is the equation of a conic section. As illustrated on Figure 1, the intersection of a 
cone with a plane parallel to the base of the cone is a circle ( 0)e = . By tilting the plane 
the circle turns into ellipses (0 1)e< <  of increasing eccentricities until the plane is 
parallel to the side of the cone when a parabola ( 1)e =  is cut out. If the tilt is further 
increased hyperbolas ( 1)e >  result. The parameter p (semilatus rectum) is the length 
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of a normal to the symmetry axis of the ellipse, parabola or hyperbola through the focus 
of each of these curves. The angle f  is called the true anomaly and is the angle 
between the radius vector r  and the direction to the nearest point on the curve 
(pericenter), see Figure 2. For an ellipse, p  is related to the semimajor axis a and the 

eccentricity e through the equation 2(1 )p a e= − . 
  

 
Figure 2. The position of m2 relative to 1m  in an ellipse. 

 
With these definitions, Kepler’s second and third law can be expressed as 
 

2r f pμ=  , 
3

2 2(2 )
a
P

μ
=

Π
 .  

 
For a planet 1 2( )G m mμ = +  where 1m is the mass of the Sun and 2m is the much 
smaller mass of the planet. Thus, μ  will vary slightly from planet to planet, whereas 
Kepler assumed that the right-hand side of the last equation is the same constant for all 
the planets. But even for massive Jupiter the deviation is only 1%, which was far too 
small to be detected in the observations that Kepler had at hand. 
 
An important application of Kepler’s third law has been to ‘weigh’ the planets which 
have satellites. Let the period, semi-major axis and mass be , ,P a m  for a planet and 

, ,P a m′ ′ ′  for its satellite. By applying the law, first to the planet in its motion about the 
Sun of mass M , and then to the satellite in its motion about the planet, we find after 
dividing the latter equation by the former: 
 

2 3

2 3
' '

'
P a m m m

M m MP a
+

= ≈
+

 ,  

 
where the last approximation is based on the fact that the Sun’s mass is much larger 
than the planet’s mass, which is in turn much larger than the satellite’s mass. Since all 
the parameters on the left of this equation can be measured, this gives the planet’s mass 
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in terms of the Sun’s mass. 
 
The velocity V  in an elliptic, parabolic or hyperbolic orbit is given by the energy 
integral 
 

21
2 2

V
r a
μ μ

− = − ,  

 
where a  is positive for an ellipse, negative for a hyperbola and infinite for a parabola. 
The three terms of this equation represent, respectively, the kinetic energy, the potential 
energy and the total energy per unit mass. From this equation we obtain the velocity of 
escape EV  from the central body at the distance r , i.e. the parabolic velocity when 
a = ∞ ,  
 

2 2E CV V
r
μ

= = , 

 
where CV  is the velocity in a circular orbit of radius r . 
 
In order to calculate the true anomaly f  for a given instant t , we need to introduce two 
auxiliary angles, which for objects in elliptic orbits are called the mean anomaly M  
and the eccentric anomaly E , related through Kepler’s equation, 
 

( ) sinM n t E e Eτ= − = − , 3n
a
μ

=   

 
where τ  is the time when the object passes through the pericenter and n  is called the 
mean motion. After obtaining E  from this equation (by iteration), f  can be calculated 
from the equation 
 

1tan tan
2 1 2
f e E

e
+⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

.  

 
2.1. Orbit in Space 
 
Two-body motion can be specified through six constant orbital elements 

,  ,  ,  ,  ,  a e Iτ ωΩ  of which the first three, as we have shown, define the size and 
shape of the orbit, and the last three orient the orbital plane in space (see Figure 3) with 
respect to some reference plane. These orbital elements are called 
 
a  – the semimajor axis 
e  – the eccentricity 
τ  – the time of pericenter passage 
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I  – the inclination (angle between orbital plane and reference plane) 
Ω—the longitude of the ascending node (measured from a fixed direction in the 
reference plane) 
ω—the argument of pericenter (angle from ascending node to pericenter) 
 

 
 

Figure 3. The orientation of the orbit of a celestial body by means of the angles 
I,  ,  ωΩ . 

 
2.2. Determination of Orbits from Observations 
 
So far we have discussed how to compute positions and velocities of celestial bodies at 
specific times given their orbital elements. The inverse problem is considerably more 
complex and can only be solved by iteration. Here we will limit ourselves to a sketch of 
how to proceed. The classical methods for orbit determination assume that at least three 
positions on the sky at different times have been observed of the body whose orbit is 
sought. Modern observations of natural and artificial celestial bodies also include 
distance and radial velocity measurements with, for instance, radars and lasers. In the 
classical orbit determination problem, we assume that three sky positions are available. 
The intervals between the observations need to be neither too short nor too long for the 
methods to converge. The body’s distance is unknown, so each observation yields only 
two coordinates. Three positions then supply 6 coordinates which are usually sufficient 
for determining the 6 orbital elements of the body. If we are dealing with a body in orbit 
about the Sun, the iteration starts off by guessing the distance of the body from the 
observer at the time of the middle observation. The heliocentric position of the Earth 
and the observer’s position on the Earth are assumed known. By means of relations for 
two-body motion, the heliocentric and geocentric positions at all three times are 
computed. The difference between the guessed and computed values of the distance, or 
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of some related quantity, for the middle observation will make it possible to improve on 
the guess and repeat the iteration until convergence.  
 
Normally more than three observations will be available. The orbit derived from three 
of the observations can then be improved by means of the method of least-squares in 
which the orbital elements are adjusted in such a way that the sum of squares of the 
residuals between observed and computed positions is minimized.  
 
- 
- 
- 
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