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Summary 
 
Primordial nucleosynthesis provides information on the baryon density of the Universe 
only a few minutes after the Big Bang; hence its knowledge is of overwhelming 
importance. In this paper the author reviews the current status of the Big Bang 
Nucleosynthesis (BBN), the key physics that controls the synthesis of the various 
elements in the early Universe and the predictions of the BBN in the framework of the 
standard (and some non standard) models of cosmology and particle physics. The 
observational data available to infer the primordial abundances are also reviewed and 
used, in conjunction with the BBN predictions, to derive the baryon density of the early 
Universe. The baryon density obtained by means of the temperature fluctuation 
spectrum of the cosmic microwave background (CMB) radiation is also discussed and 
compared with that obtained by means of the BBN. Agreement and discrepancies 
between the two predictions are extensively discussed in the framework of both the 
standard and non standard cosmological models. 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

ASTRONOMY AND ASTROPHYSICS - Big Bang Nucleosynthesis - Marco Limongi 

©Encyclopedia of Life Support Systems (EOLSS) 

1. Introduction 
 
The crucial role that the hot Big Bang might have for the origin of the elements was 
recognized for the first time by Gamow and his coworkers since the early 1940s 
(Alpher, Bethe & Gamow 1948, Alpher & Herman 1950). In fact, they pointed out that 
if the Universe was in the past at temperatures larger than 109 K, the nuclear reactions 
were efficient enough to built up heavier nuclei out of nucleons. The Gamow model 
begun with only neutrons, but this assumption was later shown to be invalid (Hayashi 
1950, Alpher, Follin & Herman 1953) since at sufficiently high temperatures 
( 1010 KT > ) the weak interactions, governing the interchange between protons and 
neutrons, are in equilibrium, making neutrons and protons almost equally abundant. In 
spite of this, however, such a model still constitutes the basic idea of the Big Bang 
Nucleosynthesis (BBN).   
 
The stability gaps corresponding at atomic masses of 5 and 8, prevented the synthesis of 
all the elements during the early Universe. Hence, the matter coming out from the BBN 
was mainly composed of light nuclei. The synthesis of the heavier elements should have 
occurred in sites of higher density and longer lifetimes (like the stars) where the mass 
gaps could be bridged by the 3� reactions (Salpeter 1952, Hoyle 1954). Big Bang 
nucleosynthesis calculations performed by several groups (Hoyle & Tayler 1964, 
Peebles 1966, Wagoner, Fowler & Hoyle 1967) in the early 1960s showed, indeed, that 
about 20-30% of the matter synthesized in the early Universe was composed in a 
substantial amount by 4He. These theoretical predictions were surprisingly in good 
agreement with the observed abundances in a variety of objects, providing strong 
evidence in favor of this model. Needles to say, however, the strongest evidence for the 
hot Big Bang came with the discovery of the cosmic microwave background (CMB) 
radiation in 1965 (Penzias & Wilson 1965). In fact, the only natural explanation of the 
observed 3K blackbody spectrum was that the early Universe has been sufficiently hot 
and dense that the scattering was frequent in the uniform primeval fireball. Other 
models that do not involve such a high temperature and high density birth cannot 
explain the existence of such a radiation.  
 
Many progresses have made since those pioneering works, both from the theoretical and 
observational side, that nowadays a very detailed comparison between the theoretical 
predictions of the Big Bang nucleosynthesis and the pre-galactic abundances of the 
elements inferred from the observations can be made. 
 
In this paper the author will provide an overview of the standard hot Big Bang model, 
focusing on the physics relevant for the primordial nucleosynthesis. Then, the author 
will present the theoretical predictions of the primordial abundances based on BBN 
calculations in the framework of the standard hot Big Bang model as well as in the 
context of some very general extension of the standard models of cosmology and/or 
particle physics. Next, the author will review the current status of the observations 
available in order to infer the primordial abundances. The predicted and observed 
abundances will be compared in order to test the internal consistency of the standard 
model and to derive the baryon density of the early Universe. Constrain extensions 
beyond the standard model will be also discussed. The temperature fluctuation spectrum 
of the CMB radiation, established several hundred thousand years later than the BBN, 
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provides probe of the baryon density at a completely different epoch in the evolution of 
the Universe and hence it is complementary to that provided by the BBN. The 
parameter estimates from both the BBN and CMB are finally compared, again testing 
the consistency of the standard model and probing or constraining some classes of non 
standard models. 
 
 
 
2. Brief Historical Overview 
 
In the 1920s Edwin Hubble and his colleagues made several discoveries that changed 
completely our perspective of the Universe in which we live. In particular, they found 
that the faint spiral nebulae were actually galaxies very distant to our Milky Way 
(Hubble 1920, 1925) and that they were moving away from us with velocities v  
proportional to their distance r  (Hubble 1929). All these pieces of information were 
summarized by the famous Hubble law 0v H r= , where 0H  is the Hubble constant. 
This law was consistent with a uniformly expanding Universe, i.e., the same law 
holding for any observer on any galaxy. 
 
The implications of such a finding were essentially two opposing categories of models: 
 
1. The big bang models describing a universe emerging from an initial state of 

temperature and density much higher than the present ones. These models were 
originally proposed and developed by Friedmann (1922) and Lamaître (1927) within 
the framework of the general relativity and later investigated also by Gamow 
(1948). 

 
2. The steady state models, originally proposed by Bondi & Gold (1948) and Hoyle 

(1948), describing a universe evolving at constant density in spite of the expansion, 
by assuming the creation of new matter at a rate depending on the rate of expansion. 
In this universe the only sites of sufficiently high temperatures and densities for the 
nucleosynthesis of heavier and heavier elements are the interiors of the stars.   

 
The discovery that the radio sources did not seem to remain uniformly distributed as one 
looked out to greater distances (Ryle 1968) was the first evidence against the steady 
state model. However, it was definitely ruled out with the discovery of the cosmic 
microwave background radiation (Penzias & Wilson 1965) and the subsequent proof 
that it has a blackbody spectrum. The density of the steady state model of the universe is 
constant by definition, i.e., it was always like it is today, hence far too low to provide 
the photon interactions needed for thermalization. When Penzias & Wilson (1965) 
discovered that the background noise in their satellite-monitoring antenna was at a 
temperature of a few degrees in all the directions, people began to believe that we did 
indeed live in a big bang universe. Many subsequent observations of this relic radiation 
at long wavelengths were in fact consistent with a blackbody spectrum of temperature 

2.90 0.08  KT = ± (Woody et al. 1975). 
 
Additional evidence for the universal origin of this radiation was its isotropy. The 
measurements of its intensity gave the same value in all the directions to within about 
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0.1% on all angular scales that were investigated (Peebles 1971). No galactic source 
models for this radiation can take into account of such an isotropy. In the big bang 
models, on the contrary, this isotropy reflects the uniformity of the universal plasma at 
the recombination era, when this radiation decoupled from the matter. From this stage 
onward, photons were able to freely propagate in the space with their blackbody 
spectrum continuously shifted toward lower and lower temperatures because of the 
universal expansion. 
 
There were also other types of observational evidences in favor of the big bang models. 
These included the result that quasars seemed to be much more common at high 
redshifts (Schmidt 1968), implying that they were more prevalent in the past. The same 
held for most radio sources, indicating that galaxies were more likely to be strong radio 
sources in the past than in the in the present (Ryle 1968). This was clearly against the 
steady state model in which no property can change during the evolution of the 
universe. Other evidence came from the determinations of the present deceleration 
parameter 2

0 /q RR R≡ − �� � , where the universal scale factor ( )R t is proportional to the 
distance between galaxies. These determinations (Sandage & Hardy 1973, Gunn & Oke 
1975) provided a value which was larger than 1−  , i.e., the value predicted by the 
steady state model. Finally, as it will be shown in what follows, the primordial helium 
abundance provided a strong evidence supporting the big bang models, since no other 
method of production gives the amount observed in such a natural way. However, the 
most striking reason for believing that our universe emerged from a big bang still was 
the 3 K background radiation. 
 
3. The Standard Hot Big Bang Model 
 
3.1 Basic Assumptions. 
 
The element production in the early universe is considered, generally, within the 
framework of two sets of basic assumptions. The first set of basic assumptions defines 
what is generally meant by big-bang model. The second set of model assumptions 
defines a specific big-bang model, i.e., the “standard” model. 
 
The first basic assumptions are that: 
 
1. The principle of equivalence is valid. This means that the (non gravitational) lows of 

physics, as expressed in their usual special-relativistic form, hold locally in all freely 
falling frames. This assumption actually implies that the theory of gravitation is 
described by a metric theory. 

 
2. The Universe was, once, at sufficiently high temperature to ensure statistical 

equilibrium among all constituents present. This assumption basically allows the 
investigation of the element production in the early universe at a time when most 
properties of the constituents of the universe are known, independent of the previous 
history. Typically the minimum temperature required is 1110  K∼ . In fact, the 
particle energies are such that the laws governing their interactions are known at that 
time and must not be specified as initial conditions. 
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The “standard” big bang model is defined by the following additional assumptions, in 
addition to the previous basic ones discussed above: 
 
3. The lepton number of the universe is less than the photon number. This assumption 

is equivalent to the requirement that all types of neutrinos are non degenerate. 
Neutrino degeneracy, i.e. an excess of neutrinos over antineutrinos, or vice versa, 
would increase the expansion rate of the universe because it increases the density of 
neutrinos (see below). Moreover, degeneracy of electron neutrinos or antineutrinos 
would shift the neutron to proton equilibrium ratio established by the weak 
interactions affecting significantly the big bang nucleosynthesis (as we see below). 

 
4. The baryon number of the universe is positive. This assumption implies that 

B γBn n nη=� where B γB, ,n n n are the number densities of antimatter, matter 
and photons respectively. η  is the so called baryon to photon ratio. 

 
5. Only relativistic baryons and leptons presently known (in addition to photons) were 

present and magnetic fields were negligible. Possible violations of this assumption 
include the presence of free quarks, superbaryons, and new types of neutrinos. In the 
standard model the only particles present at the time of nucleosynthesis are photons, 
electron and muon neutrinos and antineutrinos, electrons, positrons, neutrons and 
protons. 

 
6. The cosmological principle was valid. This means that the universe is homogeneous 

and isotropic. 
 
7. General relativity is valid. This assumption concerns the nature of the gravitational 

interaction which controls the large scale dynamics of the universe and hence its 
effect on the nucleosynthesis is through the expansion rate. 

 
3.2 Thermodynamic History of the Universe 
 
The framework for understanding the nucleosynthesis processes during the big bang is 
the evolution of the various constituents of the early Universe. Indeed, for the 
nucleosynthesis purposes, we only need to know what occurs after the temperature has 
dropped below about 1011 K (10 MeV), since above this temperature the 
electromagnetic, strong and weak interactions keep all the particles in statistical 
equilibrium, making most of their properties independent of the previous history of the 
universe. In order to understand this result we must first know the history of the 
expansion rate of the Universe. 
 
On the largest scales the present Universe is observed to be homogenous and is 
expanding isotropically. Assuming exact homogeneity and isotropy (the cosmological 
principle), the space-time is described by a unique metric, the Robertson-Walker metric  
 

( ) ( )12 2 2 2 2 2 2 2 2( ) 1 sinds c dt R t ku du u d dϑ ϑ ϕ
−⎡ ⎤= − + − + +⎢ ⎥⎣ ⎦

 (1) 
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Where ( )R t  is a time-dependent scale factor, k  is a dimensionless constant which 
measures the three-space curvature and u  is a radial comoving coordinate (particle 
world lines are given by , , .u constϑ ϕ = ). The evolutionary history of the 
cosmological model describing our Universe is contained in the time dependence of the 
scale factor ( )R t  which, in general, is obtained by solving the Einstein field equations. 
By using the Robertson-Walker metric in the Einstein field equations, the Friedmann 
models are obtained. For the Robertson-Walker-Friedmann models, the evolution of the 
scale factor is described by the solutions to 
 

2 2
2

2
1 ( ) 8
( ) 3 3( )

dR t kcH G
R t dt R t

π ρ
⎡ ⎤ Λ⎛ ⎞= = − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (2) 

 
where ( )H H t=  is the Hubble parameter, ( )tρ ρ=  is the total mass-energy density 
and Λ  is the cosmological constant (G  and c  are the Newton’s constant and the speed 
of light respectively). For non relativistic matter, the mass density is proportional to the 
particle number density, b mnρ = , where (for conserved particles) 3n R−∝ . In 
contrast, the mass (energy) of relativistic ( R ) particles (radiation) is proportional to the 
number density times the average energy per particle. Now, since all momenta are 
inversely proportional to wavelengths, 1p λ−∝ , and since all wavelengths scale 

linearly with the scale factor, 1Rλ −∝ , it turns out that 1p R−∝  and hence 
4

R Rρ −∝ . 
 
Equation 2 can be conveniently re-written in terms of the present values (indicated by 
the subscript zero) of the various quantities: 
 

2 4 3 22
0 0 0

R M 2 2 2
0 0 0 03

R R RH kc
H R R RH R H

⎛ ⎞ Λ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= Ω +Ω + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (3) 

 
where we have introduced cρ ρΩ = , being 2

c 03 8H Gρ π=  the “critical” (or 
Einstein-de Sitter) density and 0H  the famous Hubble constant. 
 
The early ( 0t t� ) evolution of the Universe is dominated by radiation, since for 

0R R�   
 

2
R

8
3

H Gπ ρ≈  (4) 

 
Integrating Eq. (4) we obtain 
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2

R
32 1

3
G tπ ρ =  (5) 

 
Since for radiation the energy density scales as the fourth power of the temperature T , 
it follows from Eq. (5) that 1/2T t−∝ , i.e., as the time goes on the Universe expands 
and cools. These relations, coupled with the conservation of energy and conservation of 
baryons allow one to describe the time evolution of all the universal properties relevant 
for nucleosynthesis (i.e., temperature and baryon density). These are summarized 
below: 
 

1/2 3
9 0 9 9

9 1/2 3
9 9 9

10.4     3     3

13.8     3             3
B

t T T T
T

t T T T

ϕ
ρ

ϕ

−

−

⎧ ⎧⋅ ⋅⎪ ⎪= =⎨ ⎨
⋅ ⋅⎪ ⎪⎩ ⎩

� �

� �
 (6) 

 
where 9T  is the temperature in units of 109 K, Bρ  is the baryon density in units of g 
cm-3 and ϕ  is related to the baryon to photon ratio B /n nγη = by the expression: 
 

43.37 10ϕ η= ⋅ ⋅  (7) 
 
Note that the conservation of baryons guarantees that ϕ  remains constant during the 
Universe evolution except for a decrease by a factor 2.75 during pair annihilation (see 
below), if there is no other source of entropy. For this reason in Eq. (6) we have 
introduced 0 2.75ϕ ϕ= ⋅  for temperatures much larger than 9 3T =  (i.e. the 
temperature corresponding to the electron pair annihilation). 
 
3.3 Big Bang Nucleosynthesis Chronology 
 
When the Universe is ~10-2 s old, and the temperature is ~1011 K (10 MeV), the 
electromagnetic, strong and weak interactions keep all the Big Bang Nucleoynthesis key 
actors (neutrinos, electrons, positrons, photons and nucleons) in statistical equilibrium. 
As a consequence we can start the description of BBN chronology at this epoch. Early 
in this epoch, the charged current weak interactions, 
i.e., en e p ν++ +U , en p eν −+ +U , occasionally beta decay (also inverse decay) 

en p e ν−+ +U , occur sufficiently rapidly to keep the proton to neutron ratio at its 
equilibrium value given by 
 

( ) 2
p nexp

M M cn
p kT

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (8) 

 
As the Universe expands and cools the lighter protons are favored compared to the 
heavier neutrons, hence the n/p ratio decreases tracking the equilibrium value. When the 
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temperature drops to 1010T ∼  K ( 1t ≈  s), the charged current weak interactions 
became too slow and are no longer able to keep the neutrons and protons in their 
equilibrium abundance ratio (Eq. (8)). As a consequence the n/p ratio, while continuing 
to decrease, tends to deviate progressively from its equilibrium value (see Figure 1) 
reaching an almost constant level. 
 
Since the departure from the equilibrium value strongly depends on the competition 
between the weak interaction rate and the early Universe expansion rate, deviations 
from the standard model (i.e., a different expansion rate) would change, even 
significantly, the relative numbers of protons and neutrons available for the following 
BBN. 
 
For high temperatures, e± ’s and γ ’s are maintained in equilibrium by pair production 

and annihilation (e e γ γ+ −+ +U ) and by Compton scattering (e γ e γ± ±+ +U ). 
As the temperature drops below the energy corresponding to the electron mass 
( 93 10T ×∼  K, 1t ≈ 0 s), annihilation proceeds but pair production effectively ceases, 
since only the very few photons in the tail of the Planck distribution has sufficient high 
energy to produce a e±  pair. The annihilations of the e± ’s heat the gas and more 
photons are produced.  
 

 
 

Figure 1. Evolution of the neutron to proton ratio as a function of the temperature in 
units of 109 K. The black solid line refers to the true variation in the standard hot Big 

Bang model ( 1S = ). The blue dotted line corresponds to the equilibrium n/p ratio (Eq. ( 
8)). The red dashed line is the same as the black line but for a faster early Universe 

expansion ( 1.5S = ). 
 
During these stages photodisintegrations prevent nuclear reactions from building up 
other nuclei. Actually, nuclear reactions among neutrons and protons 
( 2p n H γ+ +U ) proceed very rapidly. However, due to the background of high 
energetic photons, any deuterium nucleus produced by this reaction is quickly photo 
dissociated before it can capture another neutron or proton. As a consequence the 
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equilibrium abundance of deuterium is kept at a very small value and constitutes a 
bottleneck to any further nucleosynthesis of heavier nuclei. As the temperature 
decreases the deuterium equilibrium abundance tends progressively to increase and 
fewer and fewer deuterium photodisintegrations occur. When the temperature drops to 

910T ∼  K ( 100t ≈  s), the deuterium abundance becomes high enough to allow a 
significant building up of heavier nuclei and BBN effectively takes place. Tritium and 
3He are formed through the following reactions: 2 3H(n,γ) H  [where the notation 

( , )i j k l  is equivalent to i j k l+ → + ], 2 2 3H( H,p) H , 2 3H(p,γ) He  and 
2 2 3H( H,n) He ; 3H  and 3He  interact directly via 3 3He(n, ) Hp  and 
3 3

eH He e ν−→ + + . Tritium is converted into 4He  through 
3 4H(p,γ) He and 3 2 4H( H,n) He , while 3He  is burned into 4He  

through 3 4He(n,γ) He , 3 2 4He( H,p) He  and 3 3 4He( He,2p) He . The occurrence 
that no stable nuclei are present with atomic mass of 5 and 8, respectively, constitutes a 
bottleneck for the nucleosynthesis of heavier nuclei. However, even in absence of such 
gaps, the rapid decline of the temperature due to the expansion of the Universe, making 
the Coulomb barrier more important, would prevent the synthesis of elements heavier 
than helium in a sizeable amount. Some amounts of 7 Li  and 7 Be  are produced via 
4 3 7He( H,γ) Li  and 4 3 7He( He,γ) Be .  
 
When the temperature drops down to 84 10T ×∼  K ( 310t ≈  s), the Coulomb barriers 
become so large that nucleosynthesis is effectively terminated. Because of the gap 
corresponding to the atomic weight 5 and the Coulomb barrier, most of the neutrons that 
were present when nucleosynthesis began are incorporated in 4He , i.e., the most tightly 
bound light isotope. Since each alpha particle contains two neutrons, a rough estimate of 
the primordial abundance of 4He  by number is half of the initial neutron abundance at 
the time the nucleosynthesis began. The temporal evolution of the abundances of the 
light elements n, p, 2H, 3He, 4He, 7Li, 7Be is shown in Figure 2 for the standard Big 
Bang model and for 103.4 10η −= × . 
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Figure 2. Evolution of the various nuclear abundances as a function of both time and 
temperature during the expansion of a standard hot Big Bang model with 

103.4 10η −= × . 
 
 
 
- 
- 
- 
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