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Summary 

 

Nonlinear methods of analysis for seismic design of buildings and bridges typically rely 

on nonlinear frame analysis techniques. Recent advances in modeling capabilities have 

made these analyses applicable for both researchers and practicing engineers. 

Commercial and research programs model structural members using either distributed 

or lumped plasticity. In this chapter, emphasis is given to the first approach that has 

reached a high level of precision thanks to advanced formulations. Details are given for 

the element formulations and their implementation in a computer code. Both material 

and geometric nonlinearities are presented. Numerical integration and localization 
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issues are discussed too. Special elements for regions where beam theory does not apply 

and for elements with bond-slip are also briefly discussed. 

 

1. General 

 

A frame structure is a three-dimensional solid made mainly of beams and columns. In 

the general case, a three-dimensional model should be built. In order to reduce the 

complexity of the notation and to simplify the figures, only two-dimensional frames are 

considered here. In most cases, the extension to the space problem is straightforward. 

For buildings, Figure 1 shows the most common structural members. According to 

Schlaich et al. (1987), a frame is made of B regions, that is regions where the classical 

Beam theory applies, and of D regions, or Discontinuities where the beam theory does 

not apply. Typical B regions are slender beams and columns, D regions are the beam-

column joints, corbels and squat members in general. This chapter focuses on the 

nonlinear modeling of the B-regions. 

 

 
Figure 1. A frame and its main components 

 

There exist two sources of nonlinearities: material and geometric. Material 

nonlinearities are treated through the constitutive laws of the materials used, while 

nonlinear geometry becomes important when large deformations and/or large 

displacements take place. 

 

In the first part of this chapter, linear geometry is assumed: the deformations are 

assumed small and equilibrium is imposed in the undeformed configuration. At the end 

of this chapter, nonlinear geometric effects are treated in a dedicated section. The 

differential equations governing the main beam problems are briefly reviewed hereafter. 

 

1.1. Differential Equation of Axial Problem 

 

Given an infinitesimal frame length dx  (Figure 2), in the axial problem only axial 

forces and deformations are considered. Plane sections are assumed to remained plane 

here. Combining the following equilibrium, compatibility and constitutive laws 
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the governing differential equation is 
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       (4) 

 

where  N x  is the axial load,  E x  is the material modulus of elasticity (assumed here 

uniform over the section but variable along the beam length),  A x is the cross section, 

which may vary along the beam,  0u x  and  0 x  are the axial displacement and the 

axial strain, respectively, at the section reference axis along the beam and ( )xw x  is the 

distributed axial load in the axial direction. ( )EA x  is the section axial stiffness. 

Appropriate essential and natural boundary conditions are needed to complete the 

differential equation. 

 
 

Figure 2. Infinitesimal beam length: axial problem 

 

In the case of constant EA  and no axial load 

 
2

0

2
0

d u
EA

dx
          (5) 

 

The exact solution in this case is  

 

 0 0 1u x c c x          (6) 

 

where 0c  and 1c  are constants that are computed from the boundary conditions. 
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1.2. Differential Equation of Torsion Problem 

 

Warping is neglected in the derivation of the differential equation for the torsion 

problem. The infinitesimal beam length is shown in Figure 3. If T  is the torque,  x  

the angle of twist, ( )GJ x  is the torsional stiffness, and ( )xm x  is the torque per unit 

length applied to the beam, the torsion problem is formally identical to the axial 

problem. 

 

The governing differential equation is 

 

  ( )x

d d
GJ x m x

dx dx

 
   

       (7) 

For GJ constant 

 
2

2
0

d
GJ

dx


          (8) 

 

Thus the exact solution   is a linear function of x  similar to that of Eq. (6). 

 

 
 

Figure 3. Infinitesimal beam length: torsion problem 

 

1.3. Differential Equation of Bending Problem 

 

Two main beam theories are recalled here: the Euler-Bernoulli beam theory, that 

considers only bending deformations, and the Timoshenko theory that considers both 

bending and shear deformations. 

 

1.3.1. Euler-Bernoulli Beam Theory 

 

The fundamental assumption of the Euler-Bernoulli beam theory is that plane sections 

remain plane and normal to the beam longitudinal axis. This is shown in Figure 4.  
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Figure 4. Deformation of Euler-Bernoulli beam and forces on beam infinitesimal length 

 

Combining the following equilibrium, compatibility and constitutive laws 
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the governing differential equation is 
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In the previous equations  M x  is the bending moment,  I x is the cross section 

second moment of inertia, which can vary along the beam,  0v x  and  x  are the 

vertical displacement and the curvature, respectively, at the section reference axis along 

the beam, ( )yw x  is the distributed vertical load and ( )EI x  is the section bending 

stiffness. If EI const , then 
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In the absence of distributed load: 
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Thus, the differential equation of the Euler-Bernoulli beam is of the 4
th

 order in the 

unknown displacement 0( )v x . 

 

Four boundary conditions (essential or natural) must be added to the above differential 

equations in order to find the solution to a given problem. At least two of these must be 

essential, otherwise there is a mechanism.  

 

1.3.2. Timoshenko Beam Theory 

 

The Timoshenko beam theory represents a simplification of more precise beam theories 

that account for shear deformations. 

 

The fundamental assumption of the Timoshenko beam theory is that plane sections 

remain plane, but no longer perpendicular to the beam axis due to the shear 

deformation. Figure 5 shows the implications of such assumption. The cross section 

remains plane (contrarily to what happens according to Jourawsky’s theory) and the 

shear deformation   is constant over the cross section.  

 

The vertical displacement of the beam reference axis is the sum of the flexural and shear 

deflections, as shown in Figure 6: 
 

     0 f sv x v x v x         (15) 

 

where fv is the deflection due to flexure only, and sv  is the deflection due to shear only. 

 

 

Figure 5. Deformations of Timoshenko beam 
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It follows that 

 

0 f s

0

dv dv dv

dx dx dx
 

          (16) 

 

which implies that the total slope of the beam axis, 0dv dx , is the sum of the rotation 

due to bending ( f
0

dv

dx
  ) and of the rotation due to shear ( sdv

dx
  ).  

 

It follows that 

 

0 f s

0

dv dv dv

dx dx dx
 

          (16) 

 

which implies that the total slope of the beam axis, 0dv dx , is the sum of the rotation 

due to bending ( f
0

dv

dx
  ) and of the rotation due to shear ( sdv

dx
  ).  

 

 
Figure 6. Displacements of Timoshenko beam 
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In the deformed configuration the beam cross section remains plane but rotates by an 

angle  0 x , which is different from the rotation of the beam axis ( 0 0dv dx    ) 

due to the effect of shear deformation. The Euler-Bernoulli beam theory neglects the 

effect of shear deformation (i.e., 0  ), and therefore assumes that the beam axis and 

the beam cross section rotate by the same amount. 

 

Because the problem unknowns are two, two differential equations are needed. The 

following two equilibrium statements are used 

 

   
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0

0

y

d
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   
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       (17) 

and they are combined with the compatibility statements 
 

0
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         (18) 

 

and the constitutive laws 

 

 

 

s γV GA x

M EI x 




         (19) 

 

where sA  is the shear area , typically expressed as sA kA , where 
5

6
k   for rectangular 

cross sections and 
9

10
k  for circular cross sections. 

Combining the above relations, the two following general differential equations are 

obtained: 

 0
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0

0

y
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      (20) 

 

If .EI const and .sGA const  (uniform prismatic beam) 
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These are two coupled 2
nd

 order differential equations in the unknown functions 

0( )v x and 0( )x , and they govern the Timoshenko beam problem. Four boundary 

conditions (essential and/or natural) must be added to the above differential equations in 

order to find the solution to a given problem.  

- 

- 

- 
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