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Summary 

 

High performance concretes are being developed to produce stronger, lighter-weight 

structures and for numerous other applications that require improved concrete 

performance in the fresh or hardened states.  Motivated partly by ecological factors, 

there has also been an increasing usage of alternative binders, as partial replacements 

for portland cement, and alternative sources of aggregates for concrete. Whereas 

conventional reinforced concrete design has been supported by decades of laboratory 

testing and observations of field performance, these newly emerging materials lack the 

database necessary for design and assurances of adequate long-term performance over 

the intended service life.  

 

Computer modeling offers a precisely controlled environment for studying material 

composition and its relationships with structural performance. Such modeling stands to 

play a prominent role in the development of new concrete materials and their structural 

applications, complimenting results obtained through laboratory testing.  Modeling 

supports the necessary shift from materials development based on empiricism to that 

based on the materials science of cement-based composites.  Variations in the material 

composition, production processes, and exposure conditions (and the effects of such 

variations on life-cycle performance) can be simulated for large intervals on the length 

and time scales.  This chapter highlights general concepts and trends in computer 



UNESCO-E
OLS

S

SAMPLE
 C

HAPTERS

STRUCTURAL ENGINEERING AND GEOMECHANICS - Computer Modeling of Concrete Materials And Structures - J. E. 

Bolander, D. Asahina 

©Encyclopedia of Life Support Systems (EOLSS) 

modeling of concrete materials and structures, with coverage of some of the research 

needs and challenges. 

 

1. Introduction 

 

To a large extent, knowledge of conventional concrete materials has evolved through 

decades of laboratory testing and the monitoring of field performance.  Structural 

mechanics and design concepts, such as no-tension design and plastic limit state design, 

have also played important roles in the application of concrete materials within 

structures. Although such methods continue to serve the structural design community 

well, it has become increasingly apparent that computer modeling is an essential 

component within the overall strategy to develop and improve concrete materials and 

structures. 

 

Most of the advances in modeling capabilities have been accomplished within the 

framework of finite element methods.  Indeed, roughly since the 1980s many of the 

techniques for structural analysis under mechanical loading had been developed and 

summarized in an American Society of Civil Engineers (ASCE) committee report.  That 

ASCE document covers essential concepts such as constitutive modeling of concrete 

under multi-axial stress conditions, representation of cracking (including discussions of 

smeared versus discrete crack models), incorporation of reinforcement and its 

associated bond with the concrete, time-dependent effects including shrinkage and creep 

under sustained loading, and dynamic analyses.  More recent literature contains a wealth 

of publications on the continued development of finite element and alternative modeling 

strategies. Notable amongst these publications are those produced by the FraMCoS and 

Euro-C conference series.  Amongst this work, there has been growing interest in 

simulating microstructure development using models defined at the cement grain scale, 

as pioneered by researchers at the US National Institute of Standards and Technology 

(NIST).  

 

Structural concrete design has traditionally involved the provision of safe and 

serviceable structures. For justifiable reasons, the most intense analysis efforts were first 

directed toward understanding load-induced failure of concrete structures, and thus their 

safety.  As a result of several national programs on High Performance Concrete (HPC), 

which were formed in the early 1990s, research and development efforts have been 

extended to meet a broader set of objectives. Some of these objectives pertain to 

structural durability, which depends strongly on the mass transport properties of 

concrete and cracking behavior (e.g. crack spacing and opening) under service loading.  

Prolonging the maintenance-free service life is one objective.  Furthermore, in recent 

years emphases on economy (e.g. efficient production technologies, such as self-

consolidating concrete) and the keener realization of ecological constraints have 

fostered the development of new concrete materials, many of which involve alternative 

binders (usually as a partial replacement of portland cement) or alternative aggregates.  

Whereas portland cement has been the main binding agent in both conventional and 

newly emerging concrete materials, alternative binders (e.g. calcium aluminate cements 

and geopolymer cements) are receiving much attention. The role of computation has 

been strengthened and expanded by these recent shifts in interests.  Along with stronger 
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roles of computation comes increased needs for model validation at all scales of interest, 

and thus increased needs for collaboration with experimentalists.   

 

This chapter reviews general concepts and motivations for the computer modeling of 

concrete materials and structures, assuming that the reader is familiar with most of the 

essential concepts, such as those outlined in previous state-of-the-art reports.  Present 

research trends are directed towards the development of high-performance materials, 

alternative materials with lower environmental load, as well as non-traditional 

reinforcing materials (such as hybrid-fiber reinforcement and fiber-reinforced plastics). 

The totality of experimental data and field experience on these materials is limited and 

not sufficient for forecasting their service life performance, especially in severe 

environments.  Many factors, such as component geometry, boundary conditions, 

degree of confinement, and size effects are important and complicate a comprehensive 

understanding of material performance within structural settings.  

 

As a starting point for this chapter, we describe concrete as a multi-scale material. 

Discussions then center on the notion of model-based simulation, which can be viewed 

as a three-stage process of model construction, analyses, and results interpretation.  For 

effective support of material and structural design, the three-stage process should be 

implemented within a fast-feedback loop that supports the creative abilities of the 

designer.  This has been the intent of many earlier research works, but only now is 

computing technology meeting such needs within the three-dimensional frameworks 

necessary for addressing most research and practical problems. 

 

 
 

Figure 1. Concrete as a multi-scale material (adapted from van Mier (1997)) 

 

2. Concrete as a Multi-Scale Material  
 

Concrete is a mixture of cementitious binder (which has been predominantly portland 

cement), aggregate inclusions, water, and an increasing variety of admixtures to modify 

the fresh and hardened properties of the product.  Concrete is profoundly affected by 

structures and processes that reside within or span different (often disparate) length and 

time scales. Figure 1 depicts some of the relevant features and configurations that 

appear over the range of observation scales, from molecular structures and C-S-H 
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morphology within the finer size intervals up to large-scale applications of concrete as a 

macroscopic continuum. The boundaries to what are often called the 

nano/micro/meso/macro-scales are not distinct and open to interpretation. The 

engineering of cement-based composites or concrete structures is occurring at all scales.   

 

During concrete production, portland cement reacts with water to produce two main 

hydration products: calcium silicate hydrate (C-S-H) and calcium hydroxide. The 

calcium silicate hydrates are mainly responsible for the strength and stiffness of the 

cement paste, which develops over time due to continued hydration. Strength and 

stiffness are also affected by the packing efficiencies, and thus the particle size 

distributions, of both the cementitious materials and inert fillers. The desired trend 

toward stronger, less permeable materials follows from densification of the 

microstructure of the binder and at the interfaces of material/structural components. The 

amount, size distribution, and connectivity of porosity, and the introduction of cracks 

caused by volume instabilities or mechanical loading, affect the transport properties and 

thus the durability of structural concrete.  Computer simulations at the fine scales are 

able to characterize evolving pore structures and study the role of phase interfaces on 

developing cracks. 

 

The variety of potentially effective substitutions for portland cement is astounding, 

including materials that exhibit pozzolanic or latent hydraulic behaviors (e.g., industrial 

and agricultural by-products such as fly ash, ground granulated blast furnace slag, silica 

fume, and rice husk ash; and naturally derived materials, such as volcanic tuff and 

metakaolin). Whereas early age strength is generally lower due to dilution of the 

portland cement content, the addition of these mineral admixtures generally provides 

lower rate of heat production, increases longer term strength through secondary 

reactions, and improves the mass transport properties governed in large part by total 

porosity and its size distribution. Partial replacement of portland cement with these 

materials offers the added benefits of waste utilization and of reducing the CO2 

footprint of structural concrete.  Indeed, such environmental benefits have become the 

central motivation in many concrete applications. 

  

Micro-structural parameters Composite performance measures 

Fiber:  Dimensions and geometry 

 Elastic modulus 

 Volume fraction 

 Orientation and distribution 

 Rupture strength 

 Electrical conductivity 

 Pre-cracking strength 

 Elastic modulus 

 Post-cracking strength 

 Toughness 

 Fatigue life 

 Impact resistance 

 Crack size and spacing 

 Permeability 

 Electrical Properties 

Matrix:  Tensile strength 

 Pore size distribution 

 Defect size and concentration 

 Elastic modulus 

Interface:  Porosity 

 Bonding properties 

Table 1. Basic elements within material-structure-property relationships for fiber-

reinforced cement composites 
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There has been a growing appreciation of the multi-scale nature of concrete within the 

current movement toward performance-based designs of concrete materials and 

structures. Historically, however, studies of concrete materials and structures have been 

separated into different disciplines.  This lack of integrated study has led to more or less 

distinct bodies of knowledge assembled at different scales of observation.  The 

samplings of topics covered in this section, although mostly at the material scale, are 

highly relevant to the structural performance objectives, whether they concern safety, 

serviceability, constructability or economy.   For the case of fiber reinforced concrete, 

Table 1 lists some of the basic elements within material-structure-property relationships 

that bridge the micro/meso-scales and the macroscopic continuum. Computer modeling 

provides the capability to quantitatively link such various factors that are defined over 

different length and time scales. 

 

3. Motivations for Numerical Modeling 

 

The motivations for developing computational models of concrete materials and 

structures are numerous. Some of the main motivations stem from: 

 practical limitations of physical testing, especially considering the large ranges of 

relevant length and time scales that often need to be considered. Statistically 

significant and representative test results are generally cost-prohibitive for larger 

scale structural components and systems; 

 potentially large variations in the properties of the source materials. Methods of 

processing often induce inconsistencies in the distributions of constituents, including 

variations in the positioning of reinforcing components; 

 sensitivity of concrete properties to early-age thermal, chemical, and physical 

processes and their dependence on curing practice; 

 aging and degradation of materials under the influence of multiple, possibly 

aggressive, environmental phenomena; 

 three-dimensionality of material structure, transport mechanisms, and damage 

processes; and 

 lack of quantitative links between actions occurring at different length and time 

scales. 

 

An additional incentive for computer modeling comes from the thought exercises that 

go hand-in-hand with model development.  Regardless of the predictive capabilities of 

the model, the thought processes used for program development differ from those 

involved in physical experimentation. The provision of unambiguous sets of instructions 

(i.e. the computer program) requires making formal connections between the various 

factors that affect concrete performance.  Validated computer models offer a precisely 

controlled environment to study cause-and-effect relationships and the lack of practical 

constraints facilitates the exploration of design possibilities.  Beyond the research 

capabilities and benefits, it can be argued that algorithm development has intrinsic 

educational value and should be promoted within the study of concrete materials and 

structures, and in engineering curricula in general.   
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4. Analysis Process and Modeling Strategies 

 

Model-based simulation of materials and structures can be viewed as a three-stage 

process consisting of: 1) model selection and construction; 2) execution of the analysis 

routines; and 3) results interpretation.  The analysis stage is mainly accomplished 

through the use of computer programs whereas, traditionally, model construction and 

results interpretation have involved significant human intervention and effort. 

Obviously, the overall process is largely affected by the material/structural type and 

analysis goals.  These stages are now described with reference to concrete materials and 

structures, and particular emphasis on model selection and construction. 

 

4.1. Model Selection and Construction 

 

Model type should be carefully selected according to the objectives of the analyses, 

availability of data required for running and verifying the model, and adequacy of the 

available computational resources. Whereas the large majority of previous modeling 

studies have been conducted using two-dimensional analysis frameworks, most current 

research needs involve three-dimensional (material or structural) configurations, 

constraint conditions, and processes. The extension to 3-D can involve conceptual 

differences from the 2-D counterparts, but many of the challenges involve more 

practical matters, including the inherent difficulties in 3-D domain discretization, 

tremendous increases in computational expense, and difficulties in 

processing/interpreting the large amount of data generated by the analyses. Adequacy of 

available computational resources often becomes a controlling issue when modeling in 

three dimensions.  
 

 
 

Figure 2. Complementary modes of investigation 

 

The literature describes a multitude of different models for concrete materials and 

structures. This great variety makes their precise categorization difficult. Nonetheless, 

categorization is useful for discussing the commonalities and general capabilities of 

models. One broad categorization places models into one of two categories, depending 

on whether concrete is represented as a homogeneous continuum or as a collection of 

discrete elements.  The utility of such models can be understood through comparisons 

with physical experiments (Figure 2). Both categories are described below with 

emphasis on discrete models as a growing trend, enabled by advances in computing 

technology.  Recent research on fracture and damage has also involved the development 
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of multi-scale models, many of which are a hybrid combination of continuum and 

discrete approaches.  

 

4.1.1. Continuum Models 

 

Continuum models provide an average description of material behavior for a 

representative volume element. Microstructure can be considered within the continuum 

description, through the use of homogenization and constitutive modeling techniques, 

but only in a mean field sense. A large set of parameters is needed to simulate complex 

behaviors and parameter values are typically calibrated through comparisons with 

experimental results. Nonetheless, this approach is attractive for engineering analysis, 

since sizable domains can be analyzed in a computationally efficient manner. Additional 

motivations come from the observation that the width of the fracture process zone in 

concrete can be large, roughly several times the maximum aggregate size. In some 

situations, damage is finely distributed over a region of a structural component and 

therefore its modeling via a continuum approach is attractive.  

- 

- 

- 
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