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Summary 
 
The chapter presents an introduction and applications of nanobioscience in the context of 
tissue engineering, which is a rapidly developing field that aims at regenerating or 
repairing diseased or damaged tissues of the human body. There are three key factors that 
influence the success of engineered tissues, cells, scaffolds, and biomolecules. Scaffolds 
play a key role in providing a biomimicking support on which cells can grow into 
corresponding tissues. Therefore, increasing attention is being paid to the in vitro 
simulation of the nano-scale interaction of cells in the body with native extracellular 
matrix (ECM). In fact, the fabrication of scaffolds with nanofeatures and nanosignals, 
which mimic the native ECM environment, has a large impact on guiding and directing 
the cellular behavior for tissue engineering applications. Numerous techniques are now 
available for the production of nanostructured or nanopatterned surfaces/substrates. In 
this chapter, we aim to provide an overview of the methods used to fabricate physical and 
chemical nanopatterns and nanofiber scaffolds as emerging nanofeatured substrates 
suitable for tissue engineering. Finally, we review and discuss some of their most notable 
applications in cell and tissue engineering.  
 
1. Introduction 
 
Nanoscience as an interdisciplinary subject is among the most rapidly developing areas of 
science and technology in the last few decades. The impact of nanoscience, in 
combination with nanotechnology, is evident in medicine, helping to create functional 
tissue grafts for tissue engineering and regenerative applications in the last several years 
(Sharma, Gautam et al. 2011). Millions of people suffer from a variety of tissue/organ 
diseases or defects throughout the world. Although autografts and allografts help to solve 
these clinical problems, there is still a shortage of donor tissues and organs. This shortage 
has drastically increased recently, causing many patients to die while waiting for donor 
tissues or organs. Therefore, it is essential to develop more biomimetic tissue grafts in the 
laboratory for the benefit of human health care. For this reason, tissue engineering has 
emerged as an applied interdisciplinary field, which aims to repair tissue or cause its 
regeneration by applying the principles and methods of biological, chemical, and 
engineering sciences (Langer and Vacanti 1993;). The concept of tissue engineering 
involves isolating cells from a patient or donor, culturing them in vitro to increase their 
number and maintain their distinct phenotypes, seeding them onto a scaffold to create an 
engineered tissue graft, and finally transplanting the engineered tissue graft back into the 
patient’s body where the tissue regeneration is needed (see Fig. 1).  
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Figure 1. Concept of scaffold-based tissue engineering.
 
The scaffold provides structural support for cell culture and tissue growth. It also delivers 
bioactive molecules, such as growth factors, to cells to promote their surface attachment, 
migration, proliferation, differentiation, and continued growth, all of which ultimately 
lead to the formation of new tissue. To produce functional tissue grafts, which would 
successfully integrate into the patient’s body and restore the function of lost or damaged 
tissue, tissue engineering scaffolds should closely mimic the native extracellular matrix 
(ECM) of the body (Seidi and Ramalingam 2012). ECM consists of various types of 
proteins exhibiting nanoscale structures and their microscale counterparts, such as fibrils 
and pillars, which determine cell-matrix interactions that are required for functional 
tissue development. For example, collagen fibrils, which are one of the most important 
components of ECM, are approximately dozens of micrometers long and between 50 and 
400 nm wide (Bozec, van der Heijden et al. 2007, Murugan and Ramakrishna 2005, 
Murugan and Ramakrishna 2007). This nanotopographical structure of native ECM has 
an important role in specific tissue formation through a phenomenon known as contact 
guidance. Significant attention has also been paid to the development of 
biomaterials-based three-dimensional (3D) scaffolds, among which nanofiber-based 
scaffolding systems have shown unique potential for closely mimicking native ECM 
architecture (Ma and Zhang 1999). Nanofiber scaffolds offer a high surface to volume 
ratio with a high porosity, which favor the cell adhesion, migration, proliferation, and 
differentiation. Therefore, there has been an increasing trend toward fabricating 
nanofiber scaffolds suitable for tissue engineering applications in addition to 
nanopatterned biomaterial systems. In this chapter, we aim to introduce nanobioscience 
and its role in tissue engineering as an elegant bottom-up approach for engineering tissues 
in vitro. We focus our attention on the significance of nanopatterns, nanopatterning 
techniques, nanofiber tissue scaffolds, nanofiber fabrication methods, and their 
applications to tissue engineering.  
 
2. Nanopatterns and Nanopatterning Techniques 
 
Today’s interest in nanomedicine continues to grow because reducing the scale of 
engineering approaches with the use of nanotechnologies will improve the quality of 
materials and their interactions with cells and tissues. In fact, the direct cellular 
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environment is in nanometric scale, including the ECM with which cells are familiar and 
in which they evolve. Mimicking this natural environment by producing materials with 
nanofeatures and nanosignals to guide and direct cellular behavior is therefore of the 
highest importance for tissue engineering applications. Numerous techniques are now 
available for the production of nanostructures and nanotextured or nanopatterned 
surfaces, including polymer demixing, nanografting, dip-pen nanolithography, 
conductive atomic force microscopy, nanocontact printing, nanoimprint lithography, 
photolithography, laser holography, electron beam lithography, colloidal lithography, 
UV-assisted capillary force lithography, soft lithography, polymer templating, DNA 
templating, metal anodization, molecular beam epitaxy, self-assembly, electrospinning, 
nanophase coating, and glancing angle deposition. Rather than discussing these 
techniques in detail, we refer those readers who are interested in learning further details to 
several comprehensive articles (Engel, Michiardi et al. 2008; Dolatshahi-Pirouz, Nikkhah 
et al. 2011, Seidi and Ramalingam 2012). In the following section, we will focus on the 
different types of nanopatterns used in basic cell/tissue studies and their effects on cell 
behavior in terms of cell adhesion, migration, proliferation, differentiation, and continued 
function, which are all important parameters for the success of functional tissue 
engineering. 
 
2.1. Physical Nanopatterns 
 
Physical patterning refers to the modification of biomaterial substrates with a pre-defined 
texture by modulating their size and shape. Physical substrate characteristics, such as 
stiffness, roughness, and topography, have a significant influence on the regulation of cell 
behavior, particularly cell adhesion, migration, proliferation, and differentiation. With the 
introduction of micro/nanofabrication techniques into the life sciences, significant 
evidence has been gathered that cells sense and respond to microscale and nanoscale 
features (Evans, Britland et al. 1999). Thus, a recent study showed that myoblasts aligned 
to 10 – 15 nm diameter cellulose nanowhiskers ( )Dugan, Gough et al. 2010 . The 
mechanism by which cells sense these physical cues is not clearly known. However, there 
is some evidence that filopodia are involved in sensing such cues because they extend in 
front of cells and probe nearby nanotopographic features (Lim, Hansen et al. 2005). 
These nanopatterns have major effects on cell adhesion, orientation, shape, proliferation, 
migration, differentiation, signaling cascades, and gene activation (Lim and Donahue 
2007). They may have different forms, such as columns, islands, pits, protrusions, or 
nodes, and can also be anisotropic structures, such as patterns of ridges/grooves or 
isotropic-like nanoislands, homogeneously covering the substrate surface.  
 
Many studies using patterns of ridges/grooves have shown that cell alignment with the 
pattern increases with increasing groove depth while decreasing with increasing groove 
width or pitch, which is the sum of the groove and ridge width ( Zhu, Lu et al. 2005). Thus, 
Yim et al. observed cell and nuclei alignment, elongated cell shape, and reduced cell 
proliferation when smooth muscle cells (SMCs) were cultured on nanograting with 350 
nm line width and depth (Yim, Reano et al. 2005). In addition, a study by Zhu et al. using 
nanogrooves with a depth of 60 nm reported that mesenchymal stem cell (MSC)-derived 
osteoblasts cultured on this substrate showed anisotropic alignment and mineralized 
matrix (Zhu, Lu et al. 2005). If the groove width has a nanometric size, cells tend to 
bridge over the top of the ridges rather than reside inside the grooves (Teixeira, Abrams et 
al. 2003). For example, epithelial cells covered the floor of 2 µm wide grooves, whereas 
they bridged over 950 nm wide grooves. Studies using other nanostructures have shown 
that fibroblast adhesion was improved on 13 nm-high island nanotextured surfaces but 
were impaired on 95 nm high islands (Dalby, Giannaras et al. 2004). Lim et al. also 
observed better adhesion and differentiation of osteoblasts cultured on 11 nm high island 
nanotextured surfaces than on 85 nm high islands (Lim, Hansen et al. 2005). Although 
cell adhesion cannot occur across pits, and cells must settle in the inter-pit area, by using 
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varied nanopit sizes, Curtis et al. observed better cell adhesion with 35 nm pits than with 
120 nm pits (Curtis, Gadegaard et al. 2004). Fibroblasts cultured on nanocolumn-textured 
surfaces (160 nm high, 100 nm in diameter, and 230 nm gaps) displayed less spreading, 
had a rounder shape, had a greater density of filopodia, which probed the cellular 
environment and attempted to endocytose the nanocolumns, than fibroblasts cultured on 
non-textured surfaces (Dalby, Berry et al. 2004;). In summary, these nanofeatures can be 
classified as low- or high-adhesive substrates. Small islands (20 nm), columns (11 nm), 
nanoposts (pointed columns), and pits (35 nm) promote cell adhesion, whereas cell 
adhesion decreases when the size of these features increases (Dalby MJ 2007). The scale 
and type of nanopattern as well as the symmetry of its display (as in orthogonal or 
hexagonal nanopit arrays) have an effect on cell behavior (Curtis, Gadegaard et al. 
2004;Gadegaard, Martines et al. 2006).  
 
Nanostructured surface roughness also influences cell behavior. In fact, several studies of 
orthopedic implants have shown higher functionalities of osteoblasts cultured on 
nanotitania rather than on microtitania particle surfaces (Webster, Ahn et al. 2007). To 
rule out interfering factors, Palin et al. transferred the nanotitania and microtitania pattern 
roughness to poly(lactic-co-glycolic acid) (PLGA) and observed higher osteoblast 
adhesion and proliferation with the nanotitania pattern roughness-structured PLGA 
(Erica,Huinanet al. 2005). With cell adhesion, various signaling cascades and genes are 
activated by mechanotransduction. Therefore, nanotopography also has important effects 
on cell differentiation. For example, Yim et al. cultured human mesenchymal stem cells 
(hMSCs) on nanograting of 350 nm line width and depth and observed cell alignment and 
elongation along the pattern topography, as well as upregulation of neuronal markers 
(Yim, Pang et al. 2007). In another study, Yang et al. cultured neural stem cells (NSCs) 
C17.2 cells on poly(L-lactic acid) (PLLA) electrospun nanofibers and observed that cell 
differentiation was higher on nanofibers than on microfibers as evidenced by the presence 
of more extensive neurite-like outgrowths on aligned nanofiber scaffolds (see Fig. 2) 
(Yang, Murugan et al. 2005). These experimental data and others show that cells are very 
sensitive to physical nanopatterns, which have an important impact on cell behavior, and 
this sensitivity must be considered while engineering functional tissues for regenerative 
applications. 
 

 
 

Figure 2. Photographs of phase contrast microscopy showing NSCs on (a) aligned 
nanofibers, (b) aligned microfibers and (c) random nanofibers after one day of culture. 

Reprinted with permission (Yang, Murugan et al. 2005). 
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2.2. Chemical Nanopatterns 
 
Chemical patterns refer to the modification of biomaterial substrates with patterns of 
different chemicals or biochemical reagents. Chemical nanopatterning can be realized by 
nanopatterns of chemical moieties (e.g., self-assembled monolayers (SAMs)) or 
biological moieties (e.g., RGD peptides). Patterning of ECM proteins, such as fibronectin, 
laminin, vitronectin, or collagen, to promote cell adhesion is of great interest for tissue 
engineering. Each ECM protein induces a specific binding with integrins (e.g., 
fibronectin preferentially binds α5β1, vitronectin binds αvβ3, and collagen binds α2β1). 
It has been proposed that protein deposition plays a role in contact guidance. Following 
this hypothesis, local micro-nanotopography may interfere with protein adsorption or 
change of protein’s adhesive functionality, leading to discontinuous protein deposition 
and local protein concentration (van Kooten and von Recum 1999). However, this 
hypothesis has not been confirmed, and other studies have shown that protein deposition 
does not localize preferentially with topographic discontinuities, while cells sense 
topography irrespective of protein deposition (Wilson, Clegg et al. 2005).  
 

  

 
 
Figure 3. (Upper panel) Schematic showing the biofunctionalization of nanopatterns to 
control the clustering of integrin: gold dots are functionalized with c(-RGDfK-) thiols 
whereas the glass areas between the gold dots are covalently bound to polyethylene 
glycol to prevent non-specific protein adsorption. Thus, cells can only attach on the 

c(-RGDfK-)-covered gold nanodots. (Bottom panels) Micrographs of MC3T3 osteoblast 
in contact with a biofunctionalized 80 nm pattern, exhibiting filopodia to sense the 

environment. Bars: 20 μm (left); 200 nm (right). Reprinted with permission 
(Hirschfeld-Warneken, Arnold et al. 2008). 

 
As evidenced from different studies, adhesive ligand spacing is also an important 
parameter regulating cell behavior. For example, Arnold et al. densely packed nanodots 
on a gold substrate with spacing ranging from 28 to 85 nm. The nanodots were coated 
with adhesive cyclic peptide RGDfK-thiol, which has a strong affinity for integrin αvβ3, 
and were <8 nm in size, allowing the binding of only one integrin molecule per dot. When 
this matrix was used in culture with osteoblasts or other cell types, good cell adhesion and 
spreading with ligand spacing <70 nm was observed (Arnold, Cavalcanti-Adam et al. 
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2004). Other studies have also shown that cell activation is increased when ligand spacing 
decreases over the range of 70 to 10 nm (Cavalcanti-Adam, Volberg et al. 2007). 
Gradients of ligand density have also been used to investigate cellular adhesion, 
spreading, and migration. For example, Hirschfeld-Warneken et al. cultured osteoblasts 
on a gradient of spaced nanodots (see Fig. 3). These nanodots had a diameter of 6 nm and 
were coated with cyclic RGDfK. The researchers observed an increase in cell adhesion 
and spreading with decreased nanodot spacing, while nanodot spacing >73 nm reduced 
cell adhesion and spreading (Hirschfeld-Warneken, Arnold et al. 2008). As the gradient 
of binding site spacing had a strength of Δ15 nm/mm and induced cell polarization, by 
analyzing cell morphology, they were able to determine that an osteoblast cell can sense a 
1 nm spacing difference between its front and back (Hirschfeld-Warneken, Arnold et al. 
2008). During displacement, a cell binds to a new position at its front while unbinding 
from positions at its back; thus, adhesive ligand spacing is also important for cell motility. 
Maheshwari et al. showed that cell migration depends not only on the spacing between 
binding sites but also on the number of adhesive ligands on the site (Maheshwari, Brown 
et al. 2000). Experimental studies with gradients of adhesive ligand density have shown 
that cell migration increases toward higher ligand density and adhesiveness up to a 
threshold point, above which it reaches a plateau or decreases (Smith, Elkin et al. 2006).  
 
 
Hydrogels, a type of biomaterial that has a network of hydrophilic polymer chains, have 
also been used to study cell behavior, particularly 2D and 3D cell adhesion, largely 
because the number and repartition of adhesive ligands presented to cells can be tuned. 
Huebsch et al. showed that hMSCs encapsulated in an alginate hydrogel containing RGD 
peptides mechanically reorganized ligand presentation near the integrins at a nanoscale 
level when the flexibility of the substrate allowed such behavior (Huebsch, Arany et al. 
2010). Nanopatterns can also be realized by self-assembly, and networks of nanofibers 
made of self-assembled amphiphilic peptides can be functionalized to direct cellular 
behavior (Khademhosseini, Rajalingam et al. 2010). For example, Silva et al. synthesized 
a hydrogel with incorporated peptide isoleucine-lysine-valine-alanine-valine (IKVAV), 
which promotes neurite outgrowth. When murine neural progenitor cells (NPCs) were 
encapsulated, the researchers observed rapid stem cell differentiation into neurons and 
repression of astrocyte development (Silva, Czeisler et al. 2004). Wang et al. 
functionalized RADA16-I peptide by coupling it with RGD peptide to increase 
endothelial cell adhesion and with vascular endothelial growth factor (VEGF) mimicking 
motifs to induce angiogenesis. Cultured with HUVECs, this self-assembled nanofiber 
scaffold enhanced endothelial cell adhesion, migration, proliferation, and induced 
capillary formation (Wang, Horii et al. 2008). Self-assembly technology has also been 
applied in vivo to the release of basic fibroblast growth factor (bFGF). When amphiphilic 
peptide and bFGF solution were injected subcutaneously into a mouse, a clear hydrogel 
formed that induced prolonged bFGF release with significant angiogenesis 
(Hosseinkhani, Hosseinkhani et al. 2006). Other studies have used self-assembly to 
culture synthetic dermis and synthetic skin (Kao, Kadomatsu et al. 2009), for bone 
regeneration (Yoshimi, Yamada et al. 2009), neural regeneration (Ellis-Behnke, Liang et 
al. 2006; Gelain, Bottai et al. 2006), hemostasis (Ellis-Behnke, Liang et al. 2006) and 
other biomedical applications (Ellis-Behnke and Jonas 2011). Another nanopattern type 
currently used in orthopedic applications is made using nanophase deposition. 
Nanophase coating by sol-gel reaction or pulse electrodeposition is currently used to 
enhance the osteointegration of a material by coating it with hydroxyapatite (Caruso and 
Antonietti 2001;Saremi and Golshan 2007). Delivering chemical and topographical 
signals together to the targeted site is desirable for tissue engineering applications. Some 
studies have showed that chemical and topographical cues can compete or have 
synergetic effects on cells. For example, Britland et al. showed that BHK cells preferred 
to align on chemical rather than topographical cues when cultured on groove/ridge 
patterns overlaid orthogonally with continuous adhesive protein strips (Britland, Morgan 
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et al. 1996). However, when both cues were presented to cells in parallel, cell alignment 
was synergistically enhanced. In contrast, when Charest et al. cultured MC3T3-E1 
osteoblasts on embossed groove/ridge patterns overlaid orthogonally with discontinuous 
printed fibronectin lanes, they observed that cells aligned on the topographical cues 
(Charest, Eliason et al. 2006).  
 
In this section, we have highlighted different aspects of nanopatterns and nanopatterning 
techniques. Physical features, such as topography, size, symmetrical order or disorder, 
roughness, and 2D or 3D scaffolding environments, and chemical features, such as 
adhesive ligand number and spacing, SAMs, protein or nanophase coating, and 
functionalized peptides, all have a strong impact on cell behavior and must be considered 
for tissue engineering applications. In vivo, native ECM is a 3D map full of biophysical 
and biochemical cues that guide and regulate such cell behaviors as adhesion, 
proliferation, differentiation, and gene expression. Mimicking ECM with respect to the 
way in which information is delivered to cells is still far from being accomplished. 
Therefore, mimicking the environmental complexity familiar to cells by integrating ECM 
nanofeatures into scaffolding systems is necessary and will enhance cell functionality. 
For example, increasing cell adhesion or favoring stem cell differentiation by the use of 
nanopatterned surfaces is already advantageous from a tissue engineering perspective. 
Nanofeature-patterned surfaces may also be more easily accepted by host tissues, 
reducing fibrous encapsulation. Combining physical and chemical cues on nanopatterned 
scaffolds offers a way to induce multiple synergetic cellular signaling responses and 
heterotypic cell stimulation. Mixing micro- and nanofeatures will increase the scaffold’s 
potential. To mimic 3D natural matrix more thoroughly, the adjunction of temporal 
control on signal delivery will be required. With advances in nanoscience and 
nanotechnology, patterning techniques are currently evolving toward biomedical 
applications that could help to build biomimetically functional matrix suitable for tissue 
engineering. In the following sections, current methods of fabricating nanofiber scaffolds 
as promising nanobiomaterials for tissue engineering applications will be discussed. 
 
3. Methods of Fabricating Nanofiber Scaffolds 
 
There are three major techniques currently utilized for the fabrication of nanofiber 
scaffolds: electrospinning, self-assembly, and phase separation. Among them, 
electrospinning is the most widely used technique for fabricating tissue engineering 
scaffolds. 
 
3.1. Electrospinning 
 
Electrospinning is a versatile technique for producing nanofibers from polymers and their 
composites. As explained in Murugan and Ramakrishna 2006, this technique was 
introduced almost a century ago. At that time, it was named “electrostatic spray” or 
“electrostatic spinning” and was later renamed as “electrospinning” in the 90’s. However, 
only a decade ago, this method attracted a great deal of attention from researchers 
fabricating scaffolds for tissue engineering applications. The particular merit of this 
technique is that it allows building scaffolds with structural features quite similar to those 
of native ECM. It is also a more versatile technique than other conventional scaffold 
methodologies. For example, nanofibers with spatial orientation, high aspect ratios, and 
large surface areas can be produced, while allowing control over pore geometry. These 
favorable characteristics directly influence the cell adhesion, migration, contact guidance, 
and transportation of oxygen and nutrients to the cells. On this base, electrospun 
nanofibers could serve as an optimal tissue scaffold providing spatial environments for 
the growth of new functional tissue with appropriate physiological metabolic functions.  
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      sialoprotein, and   osteocalcin expression 
Peptide amphiphile  : Peptide-based molecules consisting of a hydrophobic tail and   

Photolithography  : A process used in microfabrication that utilizes a light source to  
      transfer a  geometric pattern from a photomask to a light-sensitive  
      chemical photoresist on  substrate 
 Porogen   : Particles, such as salt crystals, used to create pores in tissue 
      engineering scaffolds    

      corresponding tissue 
Self-assembled  
monolayer (SAM)  : Molecular assemblies that form spontaneously into large ordered  
      domains 
Self-assembly  : The process by which molecules adopt a defined arrangement without    
      guidance  or management from an outside source 

 Soft tissue   : Tissues, such as tendons, ligaments, and fascia, that connect, support,  
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