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Summary 
 
All aspects of our life will benefit from the revolution in nanotechnology. This 
revolution will necessitate large scale production of nanosize particles/structures, new 
formulations and novel surface properties to meet demands of novel functions. 
Meanwhile, the rapidly development of nanotechnology is likely to become new sources 
of human or environmental hazards through inhalation, ingestion, skin uptake, or 
injection of engineered nanomaterials in workplace or the use of consumer products. So 
far, research results suggest that nanoparticles may cause adverse effects on human 
health at their portal of entry, which show difference from the bulk materials of the 
same chemical composition. Taking the lung as an example, some nanoparticles can 
escape the normal defenses and translocate from their portal of entry to induce diverse 
impacts in other organs, and in some cases, the nanoparticles stay in the organ for a long 
time and be not easily excreted from the body. On interaction at a cellular level, some 
nanoparticles easily enter into the cells, etc. In order to gain a sustainable development, 
new technology always needs a good balance between the benefit and risk.  
 
Nanotoxicology is intended to address the toxicological activities of nanoparticles and 
their products to determine whether and to what extent they may pose a threat to the 
environment and to human health, and defined as the study of the nature and mechanism 
of toxic effects of nanoscale materials/particles on living organisms and other biological 
systems. It also deals with the quantitative assessment of the severity and frequency of 
nanotoxic effects in relation to the exposure of the organisms. The knowledge from 
nanotoxicological study will be the base for designing safe nanomaterials and 
nanoproducts, and also direct uses in the nanomedical sciences. This chapter consists of 
five sections with a brief introduction, the target organ toxicity of nanoparticles in 
different biological systems, the ADME (absorption, distribution, metabolism and 
excretion) of nanoparticles in vivo following different exposure routs, the cytotoxicity 
and molecular nanotoxicology of nanoparticles.  
 
1. Introduction  
 
With the fast development of nanotechnology, industries are currently involved in 
nanotechnology-related activities, among which the manufactured nanoscale materials 
or engineering nanoparticles are using in a wide range of products. It is known that 
nanostructured materials or nanoscale particles possess many novel properties such as 
self-assembly, size effects, large surface area, ultrahigh reactivity and quantum effects 
because of their very small size and unique structures. According to data collected by 
the National Nanotechnology Initiative (NNI), the quantity of manufactured nanoscale 
material is growing significantly every year. Business Communications Company has 
projected a $10 billion global demand for nanoscale materials, tools, and devices in 
2010 (see website: http://www.nano.gov/). This large increase in demand and 
production could lead to enormous exposures of humans and other organisms to 
nanomaterials/nanoparticles. What happens with these very small-size materials when 
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they entered our body, in particular what can be expected with the increased surface 
reactivity which may lead to completely different biological effects in vivo as compared 
to the bulk material of the identical chemical composition and the same quantity. Of 
cause they can either be positive and desirable, or negative and undesirable, or a mix of 
both, these mostly depend on how to utilize them.  
 
Nanotoxicology is defined as the study of the nature and mechanism of toxic effects of 
nanoscale materials/particles on living organisms and other biological systems. It also 
deals with the quantitative assessment of the severity and frequency of nanotoxic effects 
in relation to the exposure of the organisms. In fact, scientists have studied the healthy 
effects of exposure to airborne nanoparticles for years and have shown some 
unexpectedly adverse health effects of nanosized particles in vivo. For instance, the 
epidemiological investigations have found the associations of incidence of a disease and 
mortality with the concentrations and the sizes of the airborne particles in the 
environment. The increase of mortality might result from the abundant increase of 
nanoparticles. Recently, the biological/toxicological effects of manufactured 
nanomaterials and nanoparticles have attracted much attention and been seriously 
discussed (Service, 2003; Kelly, 2004; Brumfiel, 2003; Zhao et al., 2008). 
From the fact that the sizes of the nanoparticle and the biological molecule are 
comparable (Figure1), one easily bethinks of such a consequence that the nanoparticle 
may easily invade the natural defense system of human body or other species and easily 
enter the cells to affect cellular functions. The existing knowledge reminds that when 
molecules are small enough, it is possible for them to slip past the guardians in our 
respiratory systems, skip through our skin into unsuspecting cells, and (sometimes) 
cross through the blood-brain barrier (BBB). More essentially, the life process is mainly 
held out by a series of biochemical reactions in vivo. Manufactured nanoparticles 
possess ultra huge surface area, ultrahigh reactivity, highly efficient catalysis, and 
nanostructures, etc., do they interfere the normal biochemical reactions in vivo when 
entering the human body? Are these interferences beneficial or harmful to the life 
process? How to avoid the harmful effects, and how to utilize the beneficial effects? For 
instance, one sees the similarity in geometric structures of manufactured nanocage 
(fullerene) and the biological protein (clathrin) in Figure 1, they all consist of the 
pentagon and hexagon rings. 
 
In fact, many knowledge gaps need to be filled in. For instance, the large alteration in 
physicochemical properties of nanomaterials as compared to the bulk material of the 
same chemical form, and the large alteration in physicochemical characteristics between 
different sizes of the same nanomaterials will undoubtedly lead to different biological 
effects in vivo. So the existing database of safety evaluation for the bulk materials, 
including the effects on health and the environment is probably no longer valid when 
extrapolating and applying them for the safety assessment of nanomaterials. 
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Figure 1. The similarity between the structures of manufactured nanocages (fullerene) 
and proteins (coated veside and clathrin). 

 
In any application or even at the initial stages of the research and development, these 
nanoparticles easily enter the environment via various routes, and ultimately enter 
human body through direct routes such as dermal and oral exposures, nanodrugs, or 
through indirect routes such as the food chain, etc. For nanoparticles, except the very 
strong size-effects, other unique properties such as the tremendous surface, anomalous 
interface, complicated reactivity, quantum effects, etc. can also lead to changes in 
physicochemical properties which naturally alter the biological activities in vivo. These 
have been demonstrated by the reported data and will be summarized and discussed in 
the following sections of this chapter (Warheit et al., 2004; Lam, 2004; Chen, 2007; 
Feng et al., 2009; Fischer et al., 2007; Wang et al., 2005; Zhao et al., 2007; Nel et al., 
2009). Thus, in this chapter, the toxicological effects of nanomaterials will be clarified 
in detail at whole-animal, cellular and molecular levels based on the experimental 
findings from both the in vivo to in vitro models.  
 
2. Target Organ Toxicity of Nanoparticles 
 
As different tissues and organs have different compositions, structures and functions, 
toxic responses are mostly different once nanoparticles (NPs) enter different organs. 
Human skin, intestinal tract and respiratory tract are always in direct contact with the 
environmental nanoparticles. For instance, skin, as a structural barrier between the 
environment and the body, plays an important role to protect against break-in of 
exogenic particles. Respiratory tract, generally divided into three segments, upper 
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respiratory tract, respiratory airways and lung, most of which exists merely as a piping 
system for air to travel in the lungs. Gastrointestinal tract, also known as the digestive 
tract, can uptake, transport, digest and adsorb various substances such as nutrients, 
water and vitamins from food. On the other hand, the gastrointestinal tract is also 
designed as a barrier to restrain the entry of pathogens, toxins and undigested 
macromolecules. As such, these potential exposure routes are likely to be the first portal 
of entry for nanoparticles invading into the human body. In addition, other physiological 
systems such as cardiovascular system and central nervous system may have chances to 
interact with exogenous nanoparticles circulated or transported from the above exposure 
routes. So, they may also be a specific target for any type of nanoparticle into the human 
body.  
 
2.1. Respiratory System 
 
We may say that we inaugurate our life with an inspiration of air. However, the air we 
breathe is not so pure as we would desire it to be, usually containing other pollutants 
such as by-products of the combustion processes related to fires, heating, industrial and 
automotive processes. So, the toxicity research on NPs in vivo has been carried out on 
respiratory system of mammalian.  
 
2.1.1. Deposition of Nanoparticles in the Respiratory Tract 
 
Respiratory system can be further divided into different target zones such as 
nasopharyngeal, tracheobronchial and alveolar regions. Specific defense mechanisms 
may protect the mammalian organism from harmful materials at the portal of entry, 
however, these defenses may not always be as effective for NPs. When the NPs are 
inhaled, their deposition, clearance, and translocation within the respiratory tract will be 
different from the larger particles. 
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Figure 2. Predicted fractional deposition of inhaled particles in the nasopharyngeal, 
tracheobronchial and alveolar region of the human respiratory tract during nose-

breathing (ICRP, 1994). 
 
According to the diffusion motion, exposure to airborne NPs via the inhalation route 
will deposit throughout the entire respiratory tract, starting from nasopharyngeal and 
tracheobronchial, down to the alveolar regions. Depending on the particle size, the 
deposition fractions of inhaled NPs in these regions show significant difference. For 
instance, 90% of inhaled 1 nm particles are deposited in the nasopharyngeal 
compartment, only ~10% in the tracheobronchial region, and essentially none in the 
alveolar region. On the other hand, 5 nm particles show about equal deposition of ~30% 
of the inhaled particles in all three regions; 20 nm particles have the highest deposition 
efficiency in the alveolar region (~50%), whereas in tracheobronchial and 
nasopharyngeal regions this particle size deposits with ~15% efficiency (Figure2) 
(ICRP, 1994). These different deposition efficiencies should have consequences for 
potential effects induced by inhaled NPs as well as for their translocation beyond the 
respiratory tract.  
 
2.1.2. Clearance of Nanoparticles in the Respiratory Tract 
 
Pulmonary retention and clearance of microsized particles have been studied for many 
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years. While, the recent studies on occupational and environmental exposure of 
nanoparticles (NPs) generated a considerable amount of new knowledge regarding the 
clearance of NPs in the respiratory tract. The clearance of deposited particles in the 
respiratory tract is mainly by physical translocation to other sites or chemical clearance. 
Chemical dissolution in the upper or lower respiratory tract occurs for biosoluble NPs in 
the intra-cellular or extra-cellular fluids. The solutes and soluble components can then 
undergo absorption and diffusion in other subcellular structures or binding to proteins in 
cells and may be eventually cleared into blood and lymphatic circulation. This clearance 
mechanism can happen at any location within the three regions of the respiratory tract, 
depending on the pH of local extracellular and intracellular compartments. 
 
The clearance for insoluble or poorly soluble NPs in the respiratory tract is basically via 
physical translocation. The efficiency of this clearance depends highly on the site of 
deposition and particle size. The NPs trapped within the mucocillary escalator from the 
upper airways (nasopharyngeal and tracheobronchial) is expelled by pushing the mucus 
toward the mouth, hence, it is a relatively rapid process (Kreyling and Scheuch, 2000). 
For NPs within the alveolar regions, the most prevalent clearance is mediated by 
macrophage phagocytosis, which highly depends on the efficiency of alveolar 
macrophages to “sense” deposited particles, move to the site of their deposition, 
phagocytize them, and then move towards the mucociliary escalator (Kreyling and 
Scheuch, 2000).  
 
2.1.3. Nanotoxic Response of Respiratory System 
 
The epidemiological studies have found a correlation between exposure to respirable 
airborne particulate matter (PM) and increased mortality and adverse respiratory health 
effects, including the development of emphysema, chronic bronchitis, and asthma 
(Samet, 2000; Hoet, 2004). As the most toxic component of airborne particulate matter, 
nanoparticles have uncontrolled access to the cells of the airway and even intracellular 
components because of their size. Hence, deposition of NPs in the alveolar spaces of the 
lung plays a central role to pulmonary toxicity. When inhaled, NPs deposit dispersedly 
upon the alveolar surface, which likely leads to a scattered chemoattractant signal, 
resulting in lower recognition and alveolar macrophage responses (Kreyling et al., 
2006). The biopersistence of inhaled particles is an important characteristic dictating the 
level of inflammation and tissue injury. 
 
The representative studies of pulmonary inflammation and fibrosis induced by 
nanoparticles in experimental animal was first reported by Lam and Warheit who 
demonstrated that intratracheal instillation of single-walled carbon nanotube (SWNTs) 
and multi-walled carbon nanotube (MWNTs) under a certain dose induced a pulmonary 
granuloma formation and some interstitial inflammation (Figure3) (Lam, 2004; Warheit, 
2004). Further study indicates both SWNTs and MWNTs could induce the alteration of 
cell structures (Jia et al., 2005). For instance, when exposed to 5 μg/mL SWNTs, the 
macrophage cell exhibited condensed folds, while the nucleus degenerated and the 
nuclear matrix reduced when treated with MWNTs (Figure4). At a higher dose level of 
20 μg/mL, cells exposed to SWNTs became swelled and vacuolar, and presented 
phagosomes explicitly; while in those exposed to MWNTs, the chromatin was 
concentrated, selenodont border and vacuole in cytosol were presented. All the above 
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alterations show signs of cell apoptosis. It is important to note that the cell apoptosis 
induced by SWNTs and MWNTs under a certain dose is much different from the cell 
necrosis, which was accompanied with inflammation. Recent studies on intratracheal 
instillation of nanoparticles in rats showed intratracheally instilled ferric oxide 
nanoparticles (20 nm) induced some clinical pathological changes such as follicular 
hyperplasia, protein effusion, pulmonary capillary vessel hyperaemia and alveolar 
lipoproteinosis in lung （ Figure5） . The sustain burden of particles in alveolar 
macrophages and epithelium cells has caused lung emphysema and pro-sign of lung 
fibrosis (Zhu et al., 2008). Most recently, an age-related difference in the pulmonary 
response to the inhaled SiO2 nanoparticles has been found, i.e. the same respiratory 
exposure caused much severer pulmonary inflammation in old rats than in young or 
adult rats.  
 

 
 
Figure 3. Lung tissue from mice instilled with 0.5 mg of a test material per mouse and 

killed 7 d after the single treatment. (a) Serum control; (b) carbon black (CarboLex 
nanotubes); (c) silica quartz; (d) CNT; (e) RNT (raw nanotube); (f) PNT (purified 

nanotube). 
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Figure 4. Ultrastructural changes of phagocytes induced by SWNTs and MWNTs (with 

diameter of 10-20 nm) particles at different doses (Jia et al., 2005). (a) Control; (b) 
control; (c) 5 μg/mL SWNTs; (d) 20 μg/mL SWNTs; (e) 5 μg/mL MWNTs; (f) 20 

μg/mL MWNTs. 
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Figure 5. Histopathology of lung at days 7 and 30 after intratracheal instillation of 
particles or saline (hematoxylin–eosin stain, magnification = 50). Follicular hyperplasia 

of the lymph node was formed at trachea forks (dark arrow). (A) Control group; (B) 
days 7 after instillation of 0.8 mg/kg bw 22 nm-Fe2O3; (C) days 30 after instillation of 

0.8 mg/kg bw22 nm-Fe2O3; (D) days 7 after instillation of 0.8 mg/kg bw280 nm-Fe2O3; 
(E) days 30 after instillation of 0.8 mg/kg bw 280 nm-Fe2O3; (F) days 7 after instillation 

of 20 mg/kg bw22 nm-Fe2O3; (G) days 30 after instillation of 20 mg/kg bw22 nm-
Fe2O3; (H) days 7 after instillation of 20 mg/kg bw 280 nm-Fe2O3; (I) days 30 after 

instillation of 20 mg/kg bw 280 nm-Fe2O3. (Zhu et al., 2008) 
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2.2. Gastrointestinal System 
 
The gastrointestinal tract is one of the largest immunological organs of the body, 
containing more lymphocytes and plasma cells than the spleen, bone marrow and lymph 
nodes. It is considered that the exogenous sources of ingestion exposure primarily 
results from hand-to-mouth contact in the workplace. Alternatively, NPs can be ingested 
directly via food, water, drinking, drugs or drug delivery systems. In addition, NPs 
cleared from the respiratory tract via the mucociliary escalator can subsequently be 
ingested into the gastrointestinal (GI) tract. Thus, gastrointestinal tract is considered as 
an important target for NPs exposure. 
 

 
 

Figure 6. The microscopic pictures (×100) show the pathological changes in kidney 
tissues of experimental mice of the control (a); 500 mg/kg nano-copper exposed group 

(b); 1851 mg/kg nano-copper exposed group (c) 5000 mg/kg nano-copper exposed 
group (d). A: renal glomerulus and B: Bowman’s capsule. 

 
So far, our research group has investigated the acute oral toxicity of several types of 
nanoparticles with gastrointestinal tract exposure. For instance, we compared the oral 
toxicity of copper nanoparticles (23.5 nm) and micro particles (17 μm) in mice (Chen et 
al. 2006). In 17 μm particles treated mice only few mice exhibited symptoms of poising, 
however, all by nano-copper treated mice appeared obviously symptoms of alimentary 
canal function disorder, such as loss of appetite, diarrhea and vomiting, etc. Further 
pathological examination revealed grave injuries on kidney, liver and spleen in mice 
exposed to nano-copper particles, but not found in mice exposed to micro-copper 
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particles on mass basis (Figure6-Figure8). When mice were orally administrated with 20 
nm and 120 nm ZnO NPs at different doses, we found that the liver, spleen, heart, 
pancreas and bone became the target organs whose damages show different dose-
response relationship (Wang et al., 2008). The 120 nm ZnO treated mice had a positive 
dose-effect pathological damage in stomach (inflammation in gastric lamina propria, 
submucosa or serosa layer), liver (fatty degeneration of hepatocytes around central vein 
or portal area), heart (fatty degeneration of cardiovascular cells) and spleen (largement 
of splenic corpuscle), whereas, 20nm ZnO displayed a negative dose-effect damage in 
the above mentioned organs.  
 

 
 

Figure 7. The microscopic pictures (×200) show the pathological changes in liver 
tissues of experimental mice of the control (a); 500 mg/kg nano-copper exposed group 
(b); 1851 mg/kg nano-copper exposed group (c) and 5000 mg/kg nano-copper exposed 

group (d). A: steatosis. 
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Figure 8. The microscopic pictures (×40) show the pathological changes in spleen 
tissues of experimental mice of the control (a); 500 mg/kg nano-copper exposed group 
(b); 1851 mg/kg nano-copper exposed group (c) and 5000 mg/kg nano-copper exposed 

group (d). A: splenic unit and B: lymphocytes. 
 
2.3. Cardiovascular System 
 
The cardiovascular system is composed of the heart, blood vessels, vasculature, the cells 
and plasma that make up the blood. The principal function of the heart is to 
continuously pump blood around the cardiovascular system. It receives both 
sympathetic and parasympathetic nerve fibres which alter the rate of the beat, but they 
do not initiate the contraction. The blood vessels of the body represent a closed delivery 
system, which functions to transport blood around the body, circulating substances such 
as oxygen, carbon dioxide, nutrients, hormones and waste products. 
 
The epidemiologic investigations have shown a direct credible relationship between 
ambient air particulate pollution and a consistent association with increased health 
effects specifically leading to cardiovascular diseases. The concentration response 
relationship between PM2.5 and daily deaths was reported to cause 100,000 deaths 
annually in the United States (Schwartz et al., 2002). In a recent comprehensive review 
of epidemiologic studies it was shown clearly the pathophysiological changes of 
cardiovascular diseases had close association with exposure to ultrafine particles (UFPs) 
in air.  
 
In the case of manufactured nanoparticles, a single intrapharyngeal instillation of single-
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wall carbon nanotubes (SWCNTs) can induce activation of heme oxygenase-1 (HO-1), 
a marker of oxidative insults, in lung, aorta, and heart tissue in HO-1 reporter transgenic 
mice (Li et al. 2007). Furthermore, the C57BL/6 mice exposed to SWCNT (dose: 10 
and 40 μg/mouse) developed some pathophysiological changes related to cardiovascular 
diseases such as mitochondria DNA damage, elevation of mitochondrial glutathione and 
protein carbonyl levels (Li et al., 2007). In order to study the age-related difference in 
cardiovascular responses to SiO2 nanoparticles inhalation exposure, we designed a 
novel nanoparticles exposure system, a sealed Plexiglas exposure chamber specifically 
mimicking natural (physiologic) inhalation, and investigated the toxicity sensitivity of 
nanoparticles in different ages (young, adult, old) of rats (Chen et al., 2008). We 
measured and analyzed the changes in serum biomarkers, hemorheologic, heart injury, 
and pathology in rats of different ages, and found that the SiO2 nanoparticles inhalation 
under identical conditions caused severe myocardial ischemia, significant elevation of 
blood viscosity and fibrinogen concentration in old rats, yet less change in young and 
adult rats. The results indicate that old individuals are more sensitive to nanoparticle 
exposure than the young and adult rats (Chen et al., 2008) (Figure9). 
 
From above findings about cardiovascular response to nanoparticles exposure, one may 
raise a new and significant question: whether the health effects of air particulate is 
dominated by the nanosized fraction in air. Moreover, besides the factor of size, other 
physicochemical parameters of nanoparticles, such as shape, crystal structure, solubility, 
surface area, surface charge, surface coating may also play key roles on the 
cardiovascular events,  
 

 
Figure 9. With identical inhalation of nanoparticles, myocardial ischemic damage was 

seen only in older rats. 
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Figure10. Changes in whole blood viscosity (ηb) in different-aged rats who inhaled air 
containing manufactured SiO2 nanoparticles. ηb (mean ( SD) is plotted against shear rate 
at intervals from 1 S1- to 200 S1- and hematocrit at 41%. ηb was significantly elevated 

in the exposed group of old rats (a), but no statistical differences were observed between 
the exposed and control groups in each of the young (b) and adult (c) groups. Two 

asterisks (**) represents p < 0.01 in the one-way ANOVA t-test. Panels d and e show 
the changes in fibrinogen and plasma viscosity (ηp) as a function of age. p, A, and B are 

defined in Figure 2. A and B are the Duncan class of Duncan’s multiple-range test. 
(Chen et al., 2008) 

 
2.4. Central Nervous System 
 
The central nervous system (CNS), consisting of the brain and spinal cord, is 
responsible for receiving and interpreting signals from the peripheral nervous system 
and also sends out signals to it, either consciously or unconsciously. Although 
respiratory system is considered to be the main portal of entry for inhaled nanoparticles, 
extrapulmonary translocation after respiratory tract deposition is likely to happen via 
accidental or occupational acute exposure (Nemmar et al., 2002). It is also possible that 
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inhaled UFPs, by virtue of their extremely small size may deposit in the olfactory 
mucosa and then translocate in the central nervous system, which in turn might cause 
neurotoxicity. Recent studies support the concept that the CNS may be an important 
target organ for nanoparticle inhalation or intranasal instillation exposure (Oberdörster 
et al., 2004; Elder et al., 2006).  
 
The inhaled ultrafine carbon (35 nm) and manganese oxide nanoparticles (30 nm) can 
translocate in the brain via the olfactory neuronal pathway (Oberdörster et al., 2004; 
Elder et al., 2006). In particular, some investigations have indicated that inhaled or 
intranasally instilled ultrafine particle may trigger a proinflammatory response in 
nervous tissue. For instance, intranasally instilled ultrafine carbon black (14 nm) can 
induce inflammatory changes (interleukin-1β, tumor necrosis factor-α and chemokines 
mRNA) in the brain olfactory bulb (Tin-Tin-Win-Shwe et al., 2006). Further, the size-
dependent potential damage of nanoparticles on CNS was also demonstrated by the 
study of intranasal instillation of carbon black (CB) nanoparticles in mice. The 
proinflammatory responses were observed in brain olfactory bulb of the 14nm CB 
treated mice but not in the 95nm CB treated ones. The intranasal instillation of ufCB 
may influence the brain immune function depending on their size. (Tin-Tin-Win-Shwe 
et al., 2006). In our recent study, we found a time-dependent translocation pattern and 
potential damages of TiO2 nanoparticles on CNS through intranasal instillation. We 
collected the brain tissues and measured the accumulation and distribution of TiO2 
(Figure11). The tissues were analyzed with histopathology, oxidative stress, and 
inflammatory markers at post-instillation time points of 2, 10, 20 and 30 days. Results 
indicated that the instilled TiO2 directly entered the brain through olfactory bulb in the 
whole exposure period, especially deposited in the hippocampus region and induced 
pathological changes in the olfactory bulb and hippocampus regions (Wang et al., 
2008).  
 

 
Figure 11. SRXRF mapping of Ti-element distribution in the brain sections at 30 days 
after intranasal instillation of the different-sized TiO2 particles. In the control mice, the 

Ti contents are lower than the detection limit of SRXRF and the mapping is not 
available. 
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2.5. Skin 
 
The human skin, the largest organ in the body, is composed of three layers - epidermis, 
dermis and subcutaneous, protecting against the environment with a surface area of 
nearly 18,000 cm2. The outer portion of the epidermis, called stratum corneum is a 10 
μm thick keratinized layer of dead cells and is difficult to pass through by ionic 
compounds or water soluble molecules. The surface of epidermis is highly 
microstructured, having a scaly appearance as well as pores for sweat, sebaceous 
glands, and hair follicle sites. Skin is considered to be the barrier between the well-
regulated ‘‘milieu interieur’’ and the outside environment. It also has a relative large 
surface area for exposure, serving as one of the principal portals of entry by which 
nanomaterials can enter the body. 
 
Currently, there is a lack of information on whether nanoparticles can be absorbed 
across the skin’s stratum corneum barrier or whether systemically administered particles 
can accumulate in dermal tissue. The tendency for nanomaterials to traverse the skin is a 
primary determinant of its dermatotoxic potential. That is, the nanomaterials or 
nanoparticles must penetrate the uppermost stratum corneum layer in order to gain 
entrance to the viable epidermis and exert toxicity in the lower cell layers. Up to now, 
nanoparticle dermal penetration is still under controversial. A current area under 
discussion is whether or not TiO2 NPs in commercially available sunscreens can 
penetrate the skin to enter the body. Several studies in murine, porcine, or human skin 
have confirmed that TiO2 NPs remained on the skin surface or the outer layers of the 
skin and had not penetrated into or through the living skin (Lademann et al., 1999; 
Pflücker et al., 2001; Schulz et al., 2002). However, there is some evidence which 
suggests the NPs may penetrate into the epidermis or dermis. Bennat and Müller-
Goymann (2000) applied TiO2 NPs to human skin either as an aqueous suspension or 
oil-in-water emulsion and evaluated skin penetration using the tape stripping method 
(Bennat and Müeller-Goymann, 2000). They observed that TiO2 NPs apparently 
penetrated deeper into human skin when applied as an oil-in-water emulsion, and that 
penetration was greater when applied to hairy skin, which suggest that TiO2 NPs 
penetrate surface through hair follicles or pores. 
 
Nanoparticles caused dermatoxicity was reported by both in vivo or in vitro 
experiments. In an animal model study, both 0.5- and 1.0-μm beryllium particles could 
penetrate the stratum corneum and develop hapten-specific, cell-mediated immune 
responses (Tinkle et al. 2003). In an in vitro study, Shevedova et al. (2003a) reported 
that SWCNT caused a significant dose-response reduction of cell viability and oxidative 
stress biomarkers (e.g., antioxidant reserve), and a significant increase in lipid peroxides 
in human epidermal keratinocytes (0, 0.06, 0.12 and 0.24 mg/mL of SWCNT for 18 
hours), suggesting an increase of cutaneous toxicity. 
 
In the recent years, a majority of nanotoxicity research is focusing on in vitro systems. 
However, the data from in vitro studies easily mislead the safety assessment efforts. The 
data will require verification from in vivo animal experiments. On the other hand, in 
vivo systems are extremely complicated and the interactions of the nanostructures with 
biological components, such as proteins and cells, could lead to unique biodistribution, 
clearance, immune response, and metabolism. Thus, an understanding of the 
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relationship between the physical and chemical properties of the nanostructure and their 
in vivo behavior would provide a basis for assessing nanotoxicity and more importantly 
may lead to predictive models for nanotoxicity assessment. 
 
- 
- 
- 
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